Advanced Pascal Language Extensions

TIntroduction ... innn i e e

2 R N s L e e
2.1 Blring ASSIZNMENTS vttt it e
2.2 String RHelationso e .
23 8STRINGCOPY Procedure,

26 STRINGPOS Fanetion ... i
ST ENCODE Function
28 ENCODERBAL Function ... e
29DECODE Procedureo iiie i iinaens
210 DECODEREAL Procedure oci...
2ZI1THEX Procedure ..o e e e

JType Extensions i i e
3.1 Type Converslond o vttt e e e e e
3.2 Pointer/lnteger Conversions e e

B A TS ot e

4 Absolute Memory Aceess
41 BYTE and WORD Arrays oo
4.2 Absolute Addresz Operator (@) ... 0o
4.3 CALL Function ... s

5 Static Variable Allocation
A LETATIC Albribute . e
2.2 PUBLIC Attribute ..o i inanss
2.3 EXTERNAT. Attribute e

G Separate Compilationl
6.1 Rationale ... it e
6.2 MO Block . e
8.3 PUBLIC Procedures and Functions
8.4 EXTERNAL Procedures and Funetions
6.5 PUBLIC and EXTERNAL Variables
6.6 INTHREFACE Block ..o
87 Use Of INTERFACLE BIOCK vvvvivieir e iiierinnnn,

T Assembler Interface ..o oo
7.1 Code Generation Strategy ..o
7.2 Pracedure Frame Strueture
T Lnkage e
TAInMIalization ... e
ToPICand ROM ... i e e e

1o

12
12
13

14
14
15
17
17
18
L8
14

22
22

1 Introduction

Thig section describes a number of facilities ih the DEFT Pascal
Compiler which are not found in stundard Pascal. These facilities
provide the prograrnmer with significant additional capabilitics
which allow easier texi proeessing, ROM and absolute memory
access, and separate compilation with both DEFT Pascal and
DEFT Macro/6809 azsembly language.

Before deciding whether to usc these facilities, the purpose of the
program to be wrillen must he considered. 1f portability is cssential
then only thosc facilities deseribed in Pascal should be used. If the
program is o run only nn the Color Computer and you wish to take
maximum advantage of the machine's capabilities, then by all
means nse the Advanced Poscal features.

Note that even when using these advanced fealures the resulting
program may still be moved to other machines sinee many other
Paseals have corresponding features, Thig is especially true in the
“areasof slring handling, separate compilation and compiler controls.

Background 1

2 Strings

[n standard Pasecal, a string is little more than an array of char,
DEFT Pascal allows you to treat a string in exactly the same way.,
However, a string 18 not exactly thesame as an arroayaf chur inthat
you can also treat this type as 4 truc variable length structure. This
allows vou Lo aceess individual elements of the string by including a
subscript or aceess the enlire structure by not ineluding a subscript.
Note that since array of string 1s allowed, the number of subscripts
determine the t¥pe of the resulting factor.

A string, in DEFT IMascal, contains 4 string length in element 0.
The remaining elements are thestring itself. The default maximum
length of a stringis 80. Other maximums can be declared (up to 255)
by ineluding a constant in parentheses following the type identifier
STRIN(. Sce Lhe section oh Type Eaxtensions for a complete
explanation.

Note that this structure is maintained in string constanis as well as
string variables.
2.1 String Assignmenis

The assignment statement not only allows vou to assign 4 string
variahle or constant to a string, butalso a general slring ex pressgion,
The syntax of a string assignment statement is as follows:

-<Zstring variable>- :— <giring term>> + ... + -Istring term_>

Where <string variable> is a simple variable, record member,
array clement or dereferenced poinwer variable with a hase type of
string. <Zstring term> is any of the following:

& A sting variable

® A siveng constant

® A char type expression

The result of the assignment is to set the <string variable> on the
left of the assipnment sign to the ordered concatenation of the
<string term>>s on the right side, Sormne examples:

StringVar := OtherString + * suflix string’;

StringVar := 'First line’ + CHR{13) + ‘Second line’;

StringVar ;= StringVar + ‘A’

The lastexample shows how to append <Zstring lerm>s to the end of
an existing value in a <Zslring variable>,

2 Background

2.2 String Relations

As mentioned in Prscad, strings may be combined with relational
operators in boolean expressions. When comparing Lwo strings,
DEFT Pascal generates code thal compares the strings on a
character by character basis [rom left to right. When two characters
thal are notegaal, or the end of a siring is eneounterer! the compare
stops. If unequal eharuacters arc found, the hinary value of the
corresponding characters determines the resull. If the end of 3
string is encountered, the longer siring is considered greater. Only
if the current length and all correspond ing charactersare equal are
the strings themselves considered equal.

2.3 STRINGCOPY PProcedure

This predeflined procedure is used to copy a portionof one string into
another. The procedure deelaration is:

PROCEDURE STRINGCOPY (VAR SOURCE : STRING:
INDEX, LENGTH : INTEGER;
VAR DESTINATION : STRING);

The string variable DESTINATION isset to the stringcontained in
SOURCE starting with IN[}<Xth character and continuing for
LENGTH characters, If thelengthof SOURCE isless than INDK X
then DESTINATION will be null. If the length of SOURCTE is less
than INDTX+LENGTH-1 then the length of DESTIN ATION will
he the length of SOURCE les: INDEX-1.

24 STRINGDELETE Procedure

This predefined procedure is used to delele a portion of a sfring
variable. The procedure declaration is:

PROCEDURE STRINGDELETE {VAR SOURCE : STRING;
INDEX, LENGTH : INTEGER]);

The string variable SOURCE has the shring startingat the INDE X th
character and continuing for LENGTH characters removed from
it. If the length of SOURCE iz less than INDEX then no change is
maide. [f the lengih of SOURCE is less than INDEX+LENGTH 1
then all the characters in SOURCE following the INDKXth
character will be deleted and the new strimg length will be
INDEX-1.

Background 3

2.5 STRINGINSERT Procedure

This predefined procedure is used to insert one string into into
another at a specified puint. The procedure deeclaration is:

PROCEDURE STRINGINSERT {VAR SOURCE : STRING;
VAR DESTINATION : STRING;
INDEX : INTEGER),

The strirg variable SOURCE is inserted into the string
DESTINATION starting in frontof the INDEXth character. If the
length of DESTINATION is less than INDEX then SOURCE is
appended to DESTINATION.

2.6 STRINGPOS Funetion

This predefined function is used to find the location of one striny
within another, The function declaration is:

FUNCTION STRINGPOS (VAR IMAGE, TARGET : STRING) : INTEGER;

A searchof string TARGET is made to try to find sfring IMAGE. If
IMAGE is found in TARGET then STRINGPOS returns the
character position in TARGET where IMAGE was found. If
IMAGE is not found in TARGET, STRINGPOS returns a zero.

2.7 ENCODE Function

This predefined function is used to convert a string containing an
Integer eonstant Lo an integer. The function declaration is:

FUNCTION ENCODE {VAR ASCIl : STRING) : INTEGER,;

The string ASCII is scanned and the binary representation of the
ASCII characters is returned. The following rules are used during
the scan:

1. Leading blanks are ignored
2. A leading +or - sign i3 allowed

3. The scan stops when the end of the stwing or a non-numeric
character is encountered

If no numeric characlers are encountered hefore the sean stops,
ENCODE returns zero.

4 Background

2 S ENCODEREAL Function

This predefined function is used to eanvert a string containing a real
gonstant to a real. The function declaralion is:

FUNCTION ENCODEREAL (VAR ASCH : STRING) : REAL:

The siring ASCII is scanned and the binary representation of the
ASCII characters is returned. The following rules are used during
the scan:

1. Leading blanks are ignored
2. A leading + or - sign is allowed

4. The first set of digits are the mantissa and may contaln an
imhedded decimal poinl.

4. Theletter £ may follow the mantissa lo indiecate that an cxponent
follows.

The exponent may have a leading sign but cannot have an
imbedded decimal point.

[k

6. The scaun stops when the end of the string or a non-numeric
character is encountered

If ne numerie characters are encountered before the scan stops,
ENCODEREAL returns zero,

2.9 DECODE Procedure

'This predefined procedure is nsed to construct a stiring containing
the exlerna! represcntation (base 10) of an integer. The procedure
deelaration is:

PROCEDURE DECODE {(NUMBER, SIZE : INTEGER;
VAR ASCII : STRING);

The string ASCIT is constructed. NUMBER is the binary value to
use during the conversion and S17F is the resulting strming length of
ASCIL The external (base 10) representation of NUMBER is right
nstified in ASCIL. If SIZE is larger than required, leading blanks
are appended on the left. If SIZE is too small, the leftmosl
characters are Lruncated.

Background 5

2.10 DECODEREAL Procedure

‘This predefined procedure is used to construet a strimy conluining
the external ASCII representation (decimal or seientific) of 4 real
The procedure declaration is;

PROCEDURE DECODEREAL (NUMBER : REAL:
SIZE, FRACTION : INTEGER;
VAR ASCI : STRING);

The string ASCTI is constructed. NUUMBER is the binary value to
use during the conversion, SIZK is the resulting total string length
of ASCII and FRACTION is the numbher of fractionul digits to the
richt of the decimal point. The external (base 10) representation of
NUMBER is right justified in ASCIL If SIZE is larger thun
required. leading blanks are appended on the left. If SIZE is too
small, the string is filled with asterizks. If FRACTION isnegative,
then scientific notation is used, olherwise a decimal display is used.

2.11 HEX Procedure

Thiz predeflined procedure is used to construct a siring containing
the ASCII hex representation of 4 specified area of memory. The
procedure declaration is:

PROCEDURE HEX (ADDRESS : INTEGER;
BYTECQUNT : INTEGER;
VAR ASCII : STRING);

The memory area beginning at ADDRESS and eontinuing for
BY THECOUNT bytes is converted to a hex string which is placed in
ASCII The hex representation is a pair of hex digits followed by a
blank for cachbyteexcepl the lust. The resulting length of ASCIT is
{(BYTECOIINT*3)-1,

6 Background

3 'I'vpe Extensions

A strongly typed language like Pascal can help a programmer gain
and maintain control of his program. Ilc can ensure that variables
of different types are not inadvertantly combined in an expression
or the wrong type expression is passed a8 a parameter to a procedure

. or function,

However, there are occasions when a programmer wants to treat
some datum as usually of one type and semetines to treat it as
another Lype. The extensions pertaining to type found in DEFT
Paseal provide a sorely needed ty pe breaking function that is only
partially [ound in standard Pascal.

3.1 Type Conversions

Provided in standard Puscal are the type conversion functions chr,
add and ord. DEFT Paseal supports these funetions, but also
provides a more regular type breaking capability. This capabihty is
implemented with implieit builtin funection definitions based on
ordinal type definitions.

When any ordinal type is defined, DEFT Paseal also implicitly
defines a converzion function with the same name as the type. This
function has a value parameter which is of any ordinal type. It

. returns (in the same way that chr and ord do) the equivalent value
with a type equal ta the named type identifier. For example:

TYPE Color — (Red, Green, yellow);
Fruil = (Apple, Lime, Lemon};
VAR ColorVar : Color;
FrultVar : Fruit;

FruitVar := Fruit {ColorVar);

. In the above example, Colorvar produces an expression of type
(i, This expression is used as a parameter Lo the finetion Frut
(implicitly declared in the type definition) which converts it lo a

Background 7

Fruat type expression. Operation of the assignment statement is to
set FruitVar equal to the fruit whose eorresponding color is in
Color Var.

Note that as a result of thisextension, the builtin function integer is
equivalent to ord and char is equivalent to chr. :

3.2 Pointler/Integer Conversions

In order to allow full use of the addressing capability of the 6809,
DEFT Pascal provides the abilily Lo convert between integer and
poinder bypes. The builtin function pér will convertan integer lype to
a pointer type. In addition, a pointer can be converted to an integer
via the ord and integer buillin [unctions. These facilities make it
possible to manipulate pointers arithmetically. For example:

TYPE BigRecord = RECORD ... END;
VAR BigPir : - BigRecord;

BEGIN
BigPtr := PTR (ORD (BigPtr) + SIZEOF (BigRecord));

In the above example, {29FPtr is incremented 1o point to the next
BigRecord in memory.

3.3 Arrays

Instandard Pascal an array type definition includes both the upper
and lower bounds of the array as well as the element #ype. This of
course is also truc with DEFT Paseal. However, when using a
previously defined array fype identifier, vou may specify a different
upper bound than the default contained in the original type
declaration, Fxample:

TYPE MyArray = ARRAY[1..200) OF Integer;
VAR Amay1 : MyArray;
Array2 : MyArray(150);

In the abave example, Array! and Array? are equivalent Lypes,
However, Array! has 200 clements and Arrayp? has 150 elements.
This variable size capability i= useful when creating procedures and
Junetzons which process mrrays of a given fype hut with varying
sizes. However, for all arrays exeept strings, the new upper bound

8 Background

must be less than or egual to the upper bound of the original array.
Standard Pascal has a confermant arroy facility which provides an
cquivalent capability when used in procedures and functions,

Note that since the tvpe string can be used as an arvay of chur type,

. you van also speeify an upper bound (up to 295) when declaring
strings. This upper hound will determine the amount of memaory
rescrved for the siring variable and the maximum length string
value that can be stored.

Background Y

4 Absolute Memory Access

This section describes the DEFT Pascal Compiler’s facilities for
accessing zpecific arcas of the 6809 address space, In additionta the
facilities shown here, specific areas of memory ean he aceossed in
DEFT Macro/6809 assembly language via the Seprrate
Compilation facilities and the Assembler Inteviuce. However, the
facilities deseribed in thisseclion can be used entirely within Pascal
and results in position tndependent code (IPTC).

4.1 BYTE and WORD Arrays

Absolute memory can he accessed as BY'I'Fis ar WORDs by using
the corresponding pre-defined array. BYTE is
ARRAY[$0000. . $FFT'F] OF 0..256 and WORD ig
ARRAY[$00LEFFEER] OF INTEGKER. The subscript used
represents the actual memory address that is used. Example;

IF BYTE[1024] ~ $41 THEN BYTE[1024] := $42;
WORD[$7FFE] := $FFFF

4.2 Absolule Address Operator (@)

The absolute integer address of any variable can obtained with the
unary operator @, Example:

WORD[@I] :- 5;
=9 -
The abave two statements are equivalenl. This Maeility can be

combined with the pf» builtin funetion to put the address of any
variable into a pointer type variable.

4.3 CALL Function

The predefined function CALL provides the ahilily o invoke the
machine language funclions and subroutines typically found in the
Color Computer's ROM. The Funetion definition is:

TYPE ROMAddress = Integer;
AReqgister = 0..255;

FUNCTION CALL (RtnAddress : ROMAddress;
Parm : ARegister) : Aregister
When using the CALL function, the first parameter is the absolute

memory address of the subroutine to be invoked. The second
parameter is Lhe value be passed in the A register. The value

10 RBackground

returned by the function is the value that the subroutine returned in
the 4 register. Kxample:

REPEAT Key := CALL (WORD[$A000],0) UNTIL Key <> 0

. The above examplc invokes the ROM subroutine whose address 1s

located at absolute memory WORD $A000 (POLCAT). A verois

passed to thisroutine in the A register and the value returned by the

subroutine is glored in the variabie Key. The effeet of the repeat

statement is towait until a keystroke is entered at the keyboard and

to store the keystroke in Key. NOTE: In order w access ROM
routines, vou will have to run your program in 32K maode,

Backpground 11

5 Static Variable Allocation

In the section Veriables in the Pascal Language Summary, the
standard automatie allocation schemc of Pascal is deseribed. This is
the default variable allacation incorporated into DEFT Paseal.
However, it is also possible lo staficelly allocate a variable.

When a variable is statically allocated, memory 18 reserved at
compile time. This means that every time the variable is accessed,
the surne memory ares 1s secessed even if the block that Lhevariable is
defined in has been deactivated and then reactivated.

This allows you to store 2 value inlo a statically allocaled variable
thatisloeal toa procedure, before exiting from the procedure. Then
when the procedure is subsequently invoked, be able to aceess that
variable and retrieve the previously stored value. This can’t be done
with automatically allocated variables zince the specific memory
location occupied hy the variable may change on each allocation.

5.1 STATIC Attribute

Variables are statically allocated when one of several nitribuies are
added to the varstatementin which they aredefined. An attribute is
a keyword which Immediately Tollows the »ur keyword., The
simplest of these attributes is the keyword static. The only result of
this attribute is to cause all variables defined in the current var
statemnent to be statically allocated. Example:

VAR A : Char;

VAR STATIC B, C: Integer;
D : Char;

VAR E, F: Integer;
G : Char;

In the above example, variables B, € and D are all statically
allocated, Variables 4, £, 7 and & arce all dynamically allocated,
The scope of all the variables is the same.

5.2 PUBLIC Attribute

The public atiribute, like the stadic allribule, causes all the
variables defined in the corresponding ver statement to be statically
allocated. However, the puflic attribute can only be used in var
statements at the PROGEAM or MODULE (seo Sepurule
Compilation) level and may not be used in zar statements in
procedures or funciions,

12 Background

Inaddition tacausing a variableto be statically allocated, the pudiic
attribute extends the seope of the affected variables to other
seprwlely compided guwodules, These other modules reference these
public variables by declaring the same variables using the emternal
attribute (see below), Example:

VAR PUBLIC A, B:Char;
C : Infeger,;

Intheaboveexample all three variables are statically allocated and
made public. See The section on Seprrate Compilation for more
information.

5.3 EXTERNAL Attribute

T'he arternal attribute is the complementary attribute to the public
attribute. All variables defined ina var stalement with the exterral
attribute are not actually allocated by thatl ear slatemenl. This
slalement causes the slalic alloeation performed by the var publie
statement Lo be used. Example:

VAR EXTERNAL A, B: Char;
C : Integer;

In1he ahove example the variables 4, B and { have heen declared
public in another module where memory [or them has been
allocated. All references to A, [and € in the module with the
erternal attribute will aceess the publicly defined variables. See the
section on Sepurate Comprlation for more information.

Background 13

6 Separate Compilation

This section details a facility in the DEFT Paseal Compiler that
allows a programmer to hreak up a large program into a number of
staller programs. These smaller programs (known generically as
wodwles) can then be compiled and (usually) tested independently.
One of the primary advanlages of separale compilation is the
additional level of identifier scoping that is provided.

6.1 Rationale

[n general, identifiers (constants, types, variables, procedures and
functions) defined within 1 module are known only within that
module. These identificrs are thought of as wrivate and arc not
known to other modules. Of course if 2l the identifiers are private
then there is no way for the module to be used. For Lthis reason some
identifiers are always made public so that controflled access to the
madule is assured.

IFor example, o complete set of routines to handle high-resolution
graphice could be a madule, Some of these routines would be called
from outside the module and would ¢onsitute the inderfies Lo your
graphies package. These routines would be deelared wublic,

(Other routines would be utilities whose expregs purpose 15 Lo
perform funetions common to several of the public routines. Thege
utility routines would remain private so that they would notl be
inadvertantly invoked by othermodwles, Thisalsoensuresthattheir
names would not conflict with other names used in other modules.

The variables used by this graphics module are also divided into
public and private. The public variables may provide a means to
pass data to or from several of the procedures in the module or may
be used Lo specily operalional modes. The private variahles woulid
be ugsed to store temporary or intermediate resulis.

A special DEFT Pascal language construet, called an inteifoce
module, could be used o provide the compile time linkage hbetween
the graphies medule and those other modules that use it. This
tnlerfaes module would be included at the beginning of the other
modules and would provide all the external deelarations for the
publie procedures, functions and variables, In addition, it would
include consi and Lype statements in order to define any special
constants or types required by the graphies module.

14 Background

6.2 MODULE Block

Instandard PPageal, a complete program is a self-contained unit. Kor
many smaller programs this is qnite adequate and provides a
simple enviranment in which o develop them. However, when you
wish lo divide your program into several relatively independent
pieces; you have a problem if these pieces do not map, ene-to-one,
into proceduresar funetions. s this problem thal DEFT Paseal's
wnotfiele solve,

A module 15 a DEFT Pascal construet thal allows vou to groupaset
of procedures, functions and variables into a sort of aself-contained
subprogram which is compiled by itself. This Pascal module can
then he combined with other Pascal modules, DEFT Macro/6809
Assembler modides and to only one Paseal program, via DEFT
Linker, ¢ create a complete program.

The synlax of a MODULE is as follows:

Background 15

MODULE -<<mo<ule name>>,

CONST <Cidentilier>> = <constant’=;

TYPE <identifier>> = <{type definition >;
VAR <identifier> : <type definition>>;

PROCEDURE <identifier> < parameter definition™>;
<hlock>>;

FUNCTION <identifier=> <parameter definition>;
< block>>, .

END.

Ax you can see, this is almost the same us a program. In facl, with
DEFT Pascal, a program is mercly a special type of modile. A
program is the only wmodule which contains its own BEGIN
<executable statements> END. It is with these <executable
slaternents>> in the final binary program that execution begins.

One other difference between a progrom and a module 1s veriable
alloeation. In a program, the default allocation is aufomatic. In a
module, the default type of allocation is static. Since there is no way

of explicitly specifying automatic alloeation, a module’s variable
{ypes are all static. The primary reason lor this is that there is no
frame structure, (see Assembler Interface), for a moduls in which to .
automatically allocate & variable.

16 Bachkaround

Linkage between maodules and the program 13 provided via the
public and exlernal altribules deseribed below.

6.3 PUBLIC Procedures and Functions

Public procedures and funetions are declared at the outer most
block level of a program or madwle, and contain a public attribule
mmmediately following the procedure or function statement.
Procedures and functions which are nested within other procednres
or funclions may not have the public attribute. The syntax of a
pubbie procedure 1s as follows:

PROCEDURE -Zidentifier>> <Zformal parameter definition=>;
PUBLIC;
<_declaration statements>>

BEGIN
< axecutable stalements’-
END

The only difference between this and o standard procedure {(or
function)is the public attribute immediately following the proeediire
or fuepction statement.

Once a procedure or function has been declared pubdic, iL may be
invoked from other modules which have deelared the same procedure
or function ag exlerrel (see KXTRRENA L Procedures aod Frunctions),
Note: vou may not use the same identifier o declare a procedure,
function or variahle as pudlic in more than one modude, 1lowever,
once it 1s declared as publie, vou may deelare it as erternaf in as
many modules (or the program) as vou wish., An identifier cannotbe
declared as both pubiie and externalin the same modwieor program.

6.4 EXTERNAL Procedures and Functions

An erternal declaration allows a puhic procedure or function to be
know n and invoked in any siedule or jrrogrem inwhich it s declared
ag external. A procedure or function is declared as evternal by
following the procedure or function statement with only the
external stalemenl, The synlax is as follows:

PROCEDURE <lidentifier> <“formal parameler definition’>;
EXTERNAL

Background 17

This tvpe of procedurc or funclion does not have a <block>
associated with it. However, it mast have a corresponding public
procedure or function deelared in another module whose procedure
or function statement is identicel to the one used with the external
statement. Note Lhallike the pubiie statement, the external statement
can he used only with procedures and funetions which are declared
at the outer most block level of a modide or program.

6.5 PUBLIC and EXTERNAL Variables

The public and external attributes, in the VAR statement, cause
static memory allocations to be made, as desceribed in the section on
Static Variable Allocation. Public variables (like public procedures)
arethose variables whose seope has been explicitly extended bevond
the enclosing modide or progrom. Rrteraal variables are those
variables which actually existin other modfnles (OR the program) as
public variables, but whosze scope has been extended into this
module or program.

As mentioned in the section on public procedures, you may not use
the same identifier to declare a procedure, function or variahle as
publie in more than one wmoduie, llowever, once it is declared as
public, you may declarc it as erternaf in as many medules (or the

program) as you wish. Any identifier cannol be declared as both
pubiie and edfernel in the same module or prograim.

6.6 INTERFACE Block

An tnlecfuce Rlock iz a special DEFT Pascal Compiler construet
which is used in conjunection wilh a progrem. or sudede. 1ts purpose
is to simplify the compile time module linkage {which would
normally oeeur via erteraal attributes and statements).

The interface block is an oplional eonstruet which may be included 1
or more times before the module or program glatement. The syntax
is as follows:

INTERFACE <interface name>>;
< special declaraiion statemenis’>
END

The <special declaration statemenis> arc gencrally the same as
<ldeelaration slalements>> with the exeeption that all procedure,
function and VAR staternents are asswwmed o be externod. That iz,

1% Rackground

