procedure and function statements don’t have pubfic, FORWARD
or external staterments following them. Nor do they have <-block >«
following them. They are assumed to be external, since they are
fournd in the interface Block,

VAR statements also eannot have public. externnd or STATIC
attributes associated with them since they arc assumed to be
externnl.

6.7 Use Of INTERFACE Block

In general, vou will ereate an inferfoce block for each module that
you ereate. The module will contain all the publie definitions and
will be compiled to create an objeet module that contains those
procedures, functions and variahles. The inlerfaee module will exist
only in the form of Pascal source code and contain the external (by
defanit} deflinitions that are then used in all the other modules (or the
wprogram) that reference this modude.

In gur graphics example, we might have the following module:

Background 19

MODULE HiResolution;
CONST ScreenSize = $1800;

TYPE ScreenByte = -128..127; (* 1 Byte Integer *)
Screen = ARRAY] 1..ScreenSize] OF ScreenByle;
GraphTypes = (GTalpa, GTsemid, GTsemi§, ...);

VAR PUBLIC
GraphMode : GraphTypes;

PROCEDURE MapScreen (VAR ScreenVar : Screen);
PUBLIC;

(* procedure block *)

PROCEDURE ClearScreen (VAR ScreenVar : Screen);
PUBLIC;

{* procedure block *}

(* other public and private procedures .
and functions required for package *}

END.

This module contains a number of pubiic interfaces including
procedures, functions and at least one variable. Another module
which i responsible for crealing pie-charts may reference this
module as follows:

20 Background

INTERFACE HiResolution;
CONST ScreenSize = $1800;

TYPE ScreenByle — -128..127; (* 1 Byte Integer *}
Screen = ARRAY[1..ScreenSize] OF ScreenByte;
GraphTypes = (GTalpa, GTsemi4, GTsemib, ...);

VAR GraphMode: GraphTypes;
PROCEDURE MapScreen (VAR ScreenVar : Screen);
PROCEDURE ClearScreen (VAR ScreenVar : Screen);

END;

MODUILE PieCharls;

END.

The module PieCharts uses the module HiBesotution and sees its
interface to fliResolution in terms of the tnderface block. Note that
in general, the source code comprising the iuterface block will be in
an independent file which is eopied at compile time via the eompiler
% dircetive.

One final note, the file PASCALIB/EXT 1s actually an snterfoce
block with a %N at the beginning and a %L at the end which is
automatically copicd by DEFT Pascal at the beginning of every
compilation. You can foree ittobe listed by including an f. directive
in the direetive prompt on the compiler startup sereen.

Backpground 21

7 Assembler Interface

One of the primary advanlages Lo using both DEFT Paseal and
DEF'T Bench is the ability to easily mix Pascal and assembler
language ag appropriate in the development of a program. Thig
section provides the informalion on using variables, procedures and
funetions from assembler and inlurn ereating variablos, procedures
und functions in assembler for use from Pascal, with DEFT Paseal.

A pre-requizsite required for this seclion 18 4 familiarity with the
Motorola 6809 Azsembler Language, and the DEFT Macro/6809
Assembler. Information on hnking ebject files produced by Lhe
DEFT Pascal Compiler and the DEFT Macro/6809 Azsembler
can be found 1n the seetion on the DEFT Linker.

7.1 Code Generation Strategy

The DEFT Pascal compiler is a single-pass, recursive descent,
compiler which directly produces 6809 ohjecl code suitable for
linking by DEFT Linker. In order to produce this object code, a
vode generofion strotegy is requived so that the state of the machine
can he predieted from statement to statement. This strategy defines
how code, data and stack memory arcas are organized az well as
how the 6309 registers are used, In addilion, the aetual memory
organization of atl the various Paseal types should be understood.

Variahle Sizes and the Stack

As can be guessed by the ardinal and pointer &ypes available with
DEFT Pascal, the language is 16 hitoriented. I'o a large extent Lhis
is due Lo the registers and functions available on the 6808. By
keeping to a 16 bit organizalion, Lthe resulting compiler is hoth
amaller and more afficient.

In general, all instructions generated by the compiler are oriented
around the program slack. As factors are encountered in an
expession, they are pushed on the stack. Operators then operate on
the lop of the stack or combine the top two elements of the stuck to
form a result which is lefl on the top of the stack,

The number of bytes of data pushed on the stack depends on the rype
of the expression. The following table shows the number of bytes for
each fype:

22 Background

ordinal type 2 bytes

pointer type 2 bytes

real type 7 bytes*

sel type 32 bytes

file type 286 bytes + type size
string type string size + 1 bytes

array and record types sum of componenis

Although real types have a size of 6 bytes, when areal type is pushed
onh the stack, an additional byte is added in order to limit loss of
precision during arithmetic operations. The symbol table printed at
the end of cach block shows the size of all the variables and types
delined within that bleck.

Anytime parametersare passed toa procedure or function, they are
first pushed onto the stack. Values returned by funetions are lefion
the stack when the [unclion returns.

Memory Organization

The general memory organization of a Pascal program 1s shown in
Lhe [ollowing diagram:

High Memory Addresses

Stack & Dynamic
Dala Area
Code & Static

| Data Area

Low Memary Addresses

As can be seen from the above dingram, the eode and static data
ilems are allocated in low memory and the stack with its associated
dynumic data items are allocaled in high memory.

The code and static data items are inlerspersed in the order in
which they were encountered by the compiler. The code und static
data area is built from low addeeszes {o high addresses by the
compiler. Theresulting arcais whatis linked by DEFT Linkerand
eventually loaded via the LOADM command. Because DEFT
Linker eszentially handles all the code and statie data linkage, the
actual organmization of memory is of little coneern ta the
programmer.

Background 23

The stack and dynamie data area is organized by the compiler but
not actually allocated until execution of the resulting program. Asa
result the actual memory addresses cannul be predicted. The
organization of this stack area is the key to interfacing Pascal and
Asgsembler.

Register Usage

The use of the registers is oriented around the stack. The following
lists the 6809 registers and summarizes their use:

® The § register is the program stack register. It always paints to
the youngest element on the stack. This stack always grows or
shrinks by the size of the fype begin pushed or popped. Elements
are added by decrementing the S register and are removed by
incrementing the S regrister.

® The D registeris the primary accumlator, and so is considered to
be the top of stack Tor most operations, This iz done by placing
data in the I repister before actually pushing it on the stack.
Data is popped from the stack into the D register. By considering
the I? register to be the fop of stack, vperaling on the top stack
element is easy with the 6809 inscruction set.

® The U regisieris the frawne poinler, which identifies that group af
data on the stack which is associated with the most recent
procedure activation. Sce the scetion on Procedwre Frome
Structure for a complete description.

® The X register 15 used as a secondary frawme pointer, when
traversing the static frame links in order to access an identifier
which is globoa! o a procedure. See the seclion on Proceuyre
Frame Structure for a complete description. It is also used for
array indexing and variable addressing.

® The ¥ register iz used for temporary slorage, loop counting and
compare operations.

On return from a procedure or function, enly the t/, S and HF
registers will be preserved. All other registers may have been
modified.

24 Background

7.2 Procedurc Frame Structure

A frome i3 & contiguous portion of the stack that contains all the

dynamic information relating to a specific procedure activation.

Anytime a procedure or function is invoked, a frame is pushed ontn
. the stack. The structure of a frame is:

High Memory Addresses

FUNCTION return value
(present only il this is a
FUNCTION activation)

Parameters Passed to the
procedure (if any).

u-> 16 bit Static Link

16 bit Return Address

. 16 bit Dynamic Link

Local Dynamicaliy
Allocated Variahles

Temporary Expressgion
Values

S _“}. L. -
Low Memory Addresses

The base of the frame is the static fink. The U register always
containg the base address of the most recently active frame (1astone
pushed on the stack). The following notes apply to the individual
fields of the frame:

. 1. Thefunclion return valuc isonly present on a funciion activation
and can be considered to he the “zeroth” parameter.

Background 25

2. The parameters are pushed on the stack in the order in which
they oceur in the <parameter list>>, That is, the first parameter
has the highest memory address and the last parameter has the
lowest memary address. Each occupies the amount of memory
specified in the section on Variable Memory Reguirements.

3. Thestatie fink contains the base address of the most recent frame
activation for the immediately enclosing procedure. Thizs address
18 used when referencing variables which are global to the
current proeedure,

4, The 16 bit return address is the lagl element of the frame that is
created by the enlling procedure with a JSE or BSR instruclion.
The rafled procedure creates the remainder of the frame before
executing its first statement.

5. The 16 bit dynamic lnk is the base address of the vel{ing
procedwre’s frame. It is placed on lhe stack by the eailed
proceduie via a PSHS U instruction. The U register is then
immediately reset to the currcent frame's base address via a
LEAT 4,3 insiruction.

6. The local, dynamically allocated variahles are then allocated via
an LEAS -ns instruction which onfy allocates and does not
nitialize,

1. As<executablestaternent>s are executed additional stack space
is used for temporary, intermediate expression values.

Returning from a procedurc 15 easily accomplished with the
following two instructions: LEAS -4, U and PULS 1. PG, The
codling procedure is then responsible for removing the parameters
fromn the stack and using the function return value (if there is one),

The reason for having separate stalic and dynamic links is to
provide for the ability to handle recursive procedure (or funetion)
activation. Thestatic iink provides cxceution time identifier scoping,
regardless of the number of times the current procedure has
activated itself. The dynamic link provides the ahility to return to
the frame that activated the current procedure (or function).

As can be seen, as long us the assembly langnage program vheys
Lhese rules, iLean either invoke a Pascal procedure or function or be
imvoked as if the assembly language procedure or function was
written in Paseal.

26 Background

7.3 Linkage

Linkage between Pascal modules is implemented via public and
srternal attributes and statements as described in previous sections.
Linkage to assembly language modules i exactly the same.

Y ou can declare your own Pascal eallable routine as public in your
assemnbly Janguage program so that it is visible to DEFT Linker,
You then use the same name to declare the corresponding external
procedure or funetion in the Pascal windulefs} from which it is to be
called. The same is true of shared, static variables which would be
deelared as public in your assembly language modv es and external
in the appropriale Pascal module.

Alternatively, you can ereate a Pascal interface that corresponds to
your assembly language module in order to provide a more formal
interface. All Pascal modules that reference any of your assembly
language procedures, functions or variables would then %(the
snterface module to the beginning of their code. Language identifiers
that are declared ezternaf in Pascal must be declared ag public in
vour assembly lunguage program.

Any Pasecal procedures, functions or variables you wish to access
from assembly language, must be declared as publre n the
corresponding Pascal modale or program. The identifiers are then
declared as externel (via the EXT directive) in your assembly
language program,

7.4 Initialization

All programs produced by DEFT Linker have a first instruction.
For Pascal programs produced with the DEFT Paseal Compiler,
this is in the runtime support module named PASBOOT. This isthe
module thut determines the amount of memory in your system, sets
the stack pointer appropriately, sets up all interrupt vectors [or Lhe
device drivers, setups the initial frame on the stack and then calls
the main pascal progrant,

7.5 PIC and ROM

The code produced by the DEFT Pasecal Compiler is generally
position independent and non-selfmodifying (ean be placed in Read
Only Memory-ROM). There are certain conditions under which this
1% not true;

Background 27

1.

28

Any presence of siafie or public variables within a Paseal
program will result in a module that is self-modifving.

Any procedure, function or variable that is declared as external
in a4 Paseal program, and whose actual address is an absolute
memory location, will result in a module that is not pesition
independent. Absolute memory access can be accomplished in
DEFT Pascal via the BYTE, WORD and CALL language
elements so that the resulting module will be
position-independent.

Background

