DEFT Macro/6809 Assembly Language

TIntroduction i it e 1
2 Language Syntaxo e e 2
2IlLine Format ...ty g
22 Identifiers oot e e e 2
2.8 Loration Counter oo evin i iiancrmr e 3
A CONBLANTS .ttt e e e e i 3
25 B RDTeSSIONE L. ottt e e 4
LIS L R] 11 < S 4
2T RegIsters .. e .4
28 Addressing Modes ... h
3 6809 Instruction Summaryo ittt 7
4 General DHrectives e 16
O T) 5O 18
4 BN e e 1h
T T) 1 PP RU 16
L O] 5 16
A OB o e e e 17
A DB o e e e 17
AT MAIN e e 17
AR RMEB . e 17
4.9 SE T D .o e 13
B M ACTO8 oottt et 19
51 General Dperationo 19
6.2 Macro Definitiont i 19
BAMacro Invocalion ... vverr o e et iia s 20
B Linkage Directiveso it ions 23
Bl PUBLIC ..o e et e 24
B2 KX T and KX TA ... i e e e 24
B.3 ST ACK .. e 24
7 Listing Controel Directives ... it 25
0 0 o) 25
= 1 13 PP 25
TANOLTRT o et e e 25
0) 7 A 25
Th NOMELET e e e e e 25
THESKIP Lot 26
a1 N N) 26
I 1) 6 0 D 26

~

BHError Messages ittt e 27

1 Introduction

DEFT Macro/6809 is a program which reads assembly language
souree code and produces ohieet code suitable for linking by DEFT
Linker. This assemnbler fealures the following facilities:

e Motorola capatible source conventions and direetives

¢ Builtin maero [acility provides for substitution of up to 9
parameters

e (Copy facility provides the ability to include several source filesin
a single assemhly (very vonvenient for cuommon equate and
macre definition files)

® (Object code format provides relocation, separale assembly and
easy interfacing to Pascal via DEFT Linker

This seclion describes the DEFT Macro/6803 assembly language.

Readers are expected to already be familiar with the 6309 instruction
set, registers and addressing modes.

Background 1

A
=
]
j—
L
9
=
I

2 Language Syntax

The syntax used in the DEFT Macro/6809 is generally compatible
with those found in other assemblers for the 6309,

2.1 Line Format

Assembly language source code is interpreted as a series of lines
read from the source file (or copy files). Each line is made up of up to
4 fields. These [ields are separated from each other with 1 or more

blanks.

1. The {abel field is an oplional [ield which, when present, contains
anidentifier thatis to be defined {sce below). Thisfield is present
when the first character in a line is non-blank.

2. The apeode field is a required field which begins with the first
non-blank character following the first hlank character in the
line. It conlains either a 6809 opcode, directive or macro and is
used to control how the other fields in the line arc used.

3. The operandfield is the next field after the OPCODE field. Ttisa
required field for same opcodes and is not present for others.
Most of the discussion of language syntax deseribes the way that
this field is used. Nole thal this [ield may contain blanks in some
circumstances (scc below).

4. The comment field iz the lasi field in the line and consists of the
remainder of the line following the operand field {or opeode field
if the operand field is not present).

Note that in the listing produced by the assembler, these fields are
uutomatically lined up on predetermined column boundaries. The
use of the label, epcode and nperand fields ismore fully explained in
the fnilowing secitons.

2.2 Identifiers

An identifier is a name used 1o represent either an absolute or
relative value, Itisaset ofupto 12 letters and numbers which must
begin with a letter. Lower case letters are aceepted and printed as
such on the listing even though they are kept internally as upper
case letters,

An identifier is defined when used in the {abel Mield in exaclly 1
source line. The vpcode field of that source line will determine what
value is assigned to the identifier. This identifier can be used in the
operand ficld of a souree line where the identifier's value will be

2 Baekground

used. In general, an identifier can be used as an operand even in
source lines preceding the one in which it is defined. For all opcodes
except EXT, EXTA and EQU he identifier acquires the value of
the locution counter (see below) at the point in the program where
the identifier is defined.

An identifier which is defined in this manner has a refatize value.
This value is one which will be refeeated by DEFT Linker into an
absolute value when the final binary file is created. The eventual
value of a relative identifier is determined by adding the location in
memory where the object code is located to the relative value
determined by the assembler.

An identifer may be defined with an absolute value by using an
EQU opcode and an absolute expression in the operand field. See
Eaxpression and QU for more information.

2.3 Location Counter

The Loecation Counter is a 16 bit value which is kept by the
assembler thal represents the number of bytes of objecl code
produced so far. You can think of it as a relative memory address
(relative (o the beginning of the program). This value always starts
at zero and increases in value as each source linc is processed. The
value of the location counter is printed at the left-hand side of the
page for each line of source code printed.

The location counter is represented in the pwerand field via the
symhol *.

2.4 Constants

A vonstunl is always an absolute 16 bit value that is represented in
some specific way. The following constants are supported by DEFT
Macro/6509:

1. Decisnul constants are numbers in the range [rom -32768 to
+32767. Base 10 is the defanlt base.

2, Hezadeetmal constants numbers in the range [rom §0 to §FFFF.
A hexadecimal constant is identified with a leading dollar sign
(%).

3. A Single ASCI{ character constant is an ASCIE character
preceded with a single quote (). The value of the resulling
constant is the binary value of the ASCH character. Example: ‘A

Background 3

e
-
x
=
=
p—
L
i
-
=
-

i

2.

Double ASCII charucter constants are two ASCII characters
preceded with a double quote (“}). The value of the resulting
constant is the binary value of the first character in the high 8
hits and the value of the sccond character in the low 8 bits.
Example: “AB

5 Expressions

Identifiers and constunts can be combined into expressions with the
use of the arithmetic operators plus (+), minus (-), multiply (*) and
divide (/). Fixpreszien evaluation is strietly left to right with ne
operator precedence. There are some restrictions on the ereation of
expressions:

Relative values can not be multiplied or divided.

You ecan add or subtractan absolute from a relative. This results
in arelalive value.

You can subtraet a relative from a relative. This results in an
absolute value,

You cannot subtract a relative from an absolute.

You cannot add a relative to a relative.

2.6 Strings

A string is a set of 1 or more ASCII characters delimited by slashes
i/} or double quotes (“). The opeades fer, fitle and stitle are the only
ones that use strings [or operands, Sbrings cunnol be combined into
eXDressions,

2.7 Registers
The 6809 registers arc named as follows:

A - high order 8 bits of the general accumulator
B -low order 8 bits of the general accumulator
CC - 8 bil condition code register

L - 16 bit general accumulator

[IF - 8 bil direct pape register

Background

e PCor PCR - 16 bit program counter. Both designations resultin
equivalent code.

¢ 5 - 16 bit system stack register
7 - 16 bit user stack register

¢ X - .16 bit index register

#® Y - 16 bit index regizier

2.8 Addressing Mades

There are a number of addressing modes which may be used with
the 6809 instruction opeodes. These are used in the operand field
and are as follows:

® Inherent - this addressing mode has no operand field. The given
opcode hag all the addressing information necessary to complete
the instruction.

& Immediate - this addressing mode is designaled with a leading
&. The expression following the # is the object of the instruction.

® Direet - thiz addressing mode is determined by DEFT
Maero/6809 when the operand expression is absolute and its
high 8 bits are equal to the value in the most recent SE7TF

& Extended -this addressing mode is determined by the assembler
when the operand expression is either relative, or its absolute
and the high 8 bits are not equal to the value in the most recent
sebely inslruction.

e Relative - this addressing modeis determined by theopeode and
raquires a relative expressinn.

¢ Indexed - thisaddressing modeis determined when the operand
18 of one of the following forms:

Zero Offset sreg>

Constant Offset < absolute expressian>,<reg:-
Accumulalor Offset < accumulator>:,<rag>>

Auto Increment <Lreg++

Auto Decrement —reg

Program counter relative <relative expression>>,PCR
< relative expression_>,PC
Indirect [<indexed mode -]

Background D

® Register-Register - this addressing mode is determined by the
opcode and requires the following form: <reg>><reg>

¢ Mulii-Register - this addressing mode is determined by the
opeode and requires the following lorm: <reg>,... <regl> .

gueusy

6 Background

3 6809 Instruction Summary

The following summary lists the 6809 instruction opeodes supperted
by the DEF'I' Macreo/6809 Assembler. The first column is the
assembler opeode. The second column contains the addressing
modes availahle for this opeode. The third column is the title of the
instruction.

ABX Inherent AddBto X

ADCA Immediate Add Memory with Carry 10 A
Direci
Indexed
Extended

ADCB Immediate Add Memory with Carry to B
Direct
indexed
Extended

ADDA Immediate Add Memory to A
Direct
Indexed
Extended

ADDB Immediate Add Memory to B
Direcl
Indexed
Extended

ADDD Immediate Add Memoryto D
Direct
Iindexed
Extended

ANDA Immediate AND Memory to A
Direct
indexed
Extended

ANDB Immediate AND Memory to B
Direct
Indexed
Extended

ANDCC Immediate AND Memaory to CC

ASL Direct Arithmetic Shift Left Memory
Indexed

Backpround 7

LI
e
'
-
=
=
fasl
Ly
L
&
=
7=

ASLA
ASLB
ASR

ASRA
ASRB
BCC
BCS
BEQ
BGE
BGT
BHI
BHS
BITA

BITB

BLE
BLO
BLS
BLT
BMI

BNE

BPL
BRA

Extended
Inherent
Inherent

Direci
Indexed
Extended

Inherent
Inherent
Relative
Relative
Relative
Relative
Relative
Relative
Relative

Immediate
Direct
Indexad
Exiended

Immediate
Diract
Indexed
Extended

Relative
Relative
Ralative
Reiative
Relative
Relative
Relative
Relative

Arithmetic Shift Left A
Arithmelic Shift Left B
Arithmetic Shift Righ! Memory

Arithmetic Shill Right A
Arithmetic Shift Right B

Branch on Carry Clear

Branch on Carry Set

Branch on Equal

Branch on Greater Than or Equal
Branch on Greater Than

Branch on Higher

Branch on Higher or Same

Bit Test Memary with A

Bit Test Memory with B

Branch on Less Than or Equal
Branch on Lower

Branch on Lower or Same
Branch on Less Than

Branch on Minus

Branch on Not Equal

8ranch on Plus

Branch Always

Background

BRN
BSR
BVC
BvS
CLR

CLRA
CLRB
CMPA

CMPB

CMPD

CMPS

CMPU

CMPX

CMPY

Relative
Relatlve
Relative
Relative

Direct
Indexed
Extended

Inherent
Inharent

Immediate
Direct
Indexed
Exiended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexad
Extended

Immediate

‘Direct

Branch Never

Branch to Subroutine
Branch on Qveriflow Clear
Branch on Overflow Set

Clear Memaory

Clear A
Clear B

Compare Memory from A

Compare Memory from B

Compare Memory from D

Compare Memory frem S

Compare Memory from U

Compare Memory from X

Compare Memory from Y

Background

Indexed
Extended

COM Direct Complement Memeory
indexed
Extended

COMA Inherent Complement A

COMB Inherent Complement B

CWAI immediate Mask CC and Wait for Interrupi
DAA inherent Decimal Adjust A

DEC Direct Decrement Memory
indexad
Extended

DECA Inherent Decrement A
DECE Inherent Decrement 8

EORA Immediate Exclusive Or Memory with A
Direct

Indexed

Extended .
EQRE Immedlate Exclusive Or Memory with B

Direct

Indexed
Extended

EXG Reg-Reg Exhange Registers

INC Direct increment Memory
Indexed
Extended

INCA Inherent Increment A
INCB Inherent Increment B

JMP Direct Jump
Indexed
Extended

JSR Direct Jump to Subroutine
Indexed
Extended

N
h
1=

10 Background

LBCC
LBCS
LBEQ

@ .
LBGT
LBHI
LBHS
LBLE
LBLO
LBLS
LBLT
LeMI
LBNE
LBPL

@ e
LBRN
LBSR
LBVC
LBVS
LDA

LDE

Relative
Relative
Relative
Relative
Reiatlve
Relative
Relalive
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct

Indexed

Exiended

Long Branch on Carry Clear

Long Branch on Carry Set

Long Branch on Equal

Long Branch on Greater Than or Equal
Leng Branch on Greater Than

Long Branch on Higher

Long Branch on Higher or Same
Long Branch on Less Than or Equal
Long Branch on Lower

Long Branch on Lower or Same
Long. Branch on Less Than

Long Branch on Minus

Long Branch an Not Equal

Long Branch on Plus

Long Branch Always

Long Branch Never

Long Branch to Subroutine

Long Branch on Overllow Clear
Long Branch on Overflow Set

L.oad Memory into A

Load Memory intc B

Load Memory into D

Background 11

LDS

LDU

LDX

LDY

LEAS
LEAU
LEAX
LEAY
LSL

LSLA
LSLB
LSA

LSRA
LSRB
MUL
NEG

12

Immediate
Direct
indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Iimmediate
Direct
Indexed
Extended

Indexed
indexed
Indexed
Indexed

Direct
Indexed
Extended

Inherent
Inherent

Direct
Indexed
Extended

Inherent
Inherent
Inherent

Direct
Indexed
Extended

Lead Memory into §

Load Memory into U
Laad Memory intg X
Load Memory into Y

Load S with Effective Address

Load U with Effective Address

Load X with Effective Address .
Load Y with Effiective Address

Logical Shift Left Memory

Logical Shiift Left A
Logical Shift Left B
Loglcal Shifl Right Memoty

Logical Shift Right A
Logical Shift Right B

Muitiply .

Negale Memory

Background

NEGA
NEGB
NOP

. ORA

ORB

ORCC
PSHS
PSHU
PULS
PULU

@ -

ROLA
ROLB
ROR

RORA
RORB
RTI

S

RT:
. SBCA

Inherent
Inherent
Inherent

Immediate
Direct
Indexed
Extended

Immediate
Direcl
Indexed
Extended

immediale
Multi-Reg
Multi-Reg
Multi-Reg
Multi-Reg

Direct
Indexed
Extended

Inherem
Inherent

Direct
Indexed
Extended

Inherent
Inherent
Inherent
Inherent

Immediate
Direct
Indexed

"Extended

Negate A
Negate B
Mo Operation

Inclusive Or Memary with A

Inclusive Or Memory with B

Inclusive Or Memory with CC
Push Registers on System Stack
Push Registers on User Stack
Puli Registers from System Stack
Pull Registers from User Stack
Rotate Left Memory

Rotate Left A
Rotaie Left B
Rotate Right Memory

Rotate Right A

Rotate Right B

Return from Interrupi
Return from Subroufine

Subtract Memory with Barrow from A

Background 13

sy

SBCB

SEX
STA

5TB

STD

STS

STU

STX

STY

SUBA

14

immediate
Direct
Indexed
Extended

Inherent

Immediate
Direci
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Inclexed
Extended

Immediate
Direct
Indexed
Extended

Immaediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Subtract Memory with Borrow from B

Sign Extend B inta A

Store Memory from A

Store Memory from B

Store Memory from D

Store Memory from S

Store Memory fram U

Store Memotry from X

Store Memory from ¥

Subtract Memory from A

Rackground

sUBB

SuBD

Swi
swi2
SWI3
SYNC
TFR
TST

TSTA
TSTB

Immediate Subtract Memaory from B

Direct
Indexed
Extended

Immediale
Direci
Indexed
Extended

inherent
Inherent
Inherent
inherent
Reg-Reg

Direct
Indexed
Extended

Inherent

Inherent

Subtract Memory from D

Software Interrupt 1
Software Interrupt 2
Software Interrupt 3
Synchronize to Interrupt
Transfer Register o Register

Test Memory

Test A
Test B

Background 15

4 General Directives

In addition o the opeodes listed in the preceding section, which
translate directly into 6209 opeodes, DEFT Macro/680Y contains a
nurmber of directives which provide memory initializalion,
reservation and assembly conlrol,

4.1 COPY

This direective allows you to copy source lines from another file into
the current assembly. The standard file name found in the operand
field is openned {with a delault sullix of ASM) and read to end of
file, In the current vergion of the assembler, files that have been
capied cannot themgelves eontain COPY directives. Fxample;

COPY RECRDEGU:1
COPY MYMACROS

4.2 END

Thiz directive iz provided in order to allow the programmer Lo
terminate his program with an KNI, The KNI directive has no
OPERAND and does not result in code generation. The assembler
will conlinue processing any source lines following an END. The
assembler does not require aprogramtohave an END since zouree
lines are fetehed until end of file is reached. Kxample:

END
4.3 EQU

This directive provides the capability of defining an identifier to
have a specifie value. The identifier found in the label ficld is
assigned the value of the expression fuund in the vperund [eld.
Example:

LABEL1 EQU $50

LABEL2 EQU LABEL1*3

LABEL3 EQU *-EARLIERLABEL
4.4 FCC

This direetive creates an ASCII string of characters. The operand
field conlaing the ASCII siring to be created enclosed in either
slashes {/) or double quates (“). Example;

16 Background

NAME FCC /John Q. Smith/
NAME?2 FCC “Mary Jones/MD"”

4.5 FCB

This directive creates individual bytes with the values of the
expressioniz) found inthe operand field. More than one byte may he
defined by separating the expressions with commas (,). Kxample:

BYTES FCB 6,5F,LABEL1A
FCB *-BYTES

4.6 FDB

This directive ercates individual words with the values of the
expression(s) found in the operand ficld (high bitg in low order hyte).
More than one word may be defined by separating the expressions
with commas (). Example:

WORDS FDB 56
FDB WORDS+3

4.7 MAIN

This directive tells the DEFT Maecro/6809 (and subgequently
DEFT Linker) where execution should hagin. Only one main
dircetive should be included in a set of modules to be linked
together. Main has no operand, so execution will be at the value of
the location counter. Kxample:

MAIN
START

4.8 RMB

This direclive reserves memory which is preinitialized to zero. The
absolute expression found in the operund field specifies thenumber
of bytes of memory to reserve, Example:

WRKAREA RMB $200

Background L7

fguwrsy

4.9 SETDP

This direetive specifies to the assembler what page number should
constitute the direct page, Thiz direclive should generally follow u
TFR instruection that loads the DP register with a new value. The
expression (evaluated at assembly timme) in the pperand field is used
as the new direct page number. I no setdp directive is given, page
number 0 iz agsumed 1o be the direct page. Fxample:

LDA #DATATABLE/256 A=Page Number
TFR A,DP Putin DP
SETDP #DATATABLE/256 Tell assembler

Note that the above example works only if HATATARBLE is an
ahsolute.

18 Background

