b Macros

When writing a program in assembly language, you frequently
encounter situations where a group of ingtructions i repeated
throughout your program with only minor variations. Subroutine
calls which require parameters to be setup are a typical example. In
this case, enly the arguments are different. What isneeded is a way
to define a template of instructions which could then be invoked at
those points in the program where they are needed. Macros are
exactly these templates,

5.1 General Operation

Before a macro can be used it must first be defined. This definition
must be processed by the assembler on source lines that are read
before the source lines on which the macro iz used. This definition
includes the name of the macro, a body which includes the fixed
elements as well as where parameters are to be substituted and
finally an ending which tells the assembler that the definition is
conmiplete,

Once the definilion is completed the macro may be used. The rame
of the macro used in the opeode [ield of a subsequent source line is
what actually invokes the maero, The substitution parameters are
placed in the operand field separated with commas. The previous
macro definition now is included at this point in the program very
much like a eopy. The main difference is that the parameters
included on the invocation line are substituted throughout the
source lines as defined in the template. These lines are then
aszembled and optionally listed.

5.2 Macro Definition

A maery is defined with a MACRO directive. The operand field
must contain a maero name of up to 6 characters. Note that the
assembler can distinguish between an identifier und 4 macro with
the same name. However, the assembler cannot distinguish belween
amacro and a predefined assemhler opeode or directiveof the same
name. Following the MACRO direclive is a number of souree lines
that constitute the template. The definition ends with an KNDMW
directive which has no operand field. Up to 80 maeros may be
defined whose templates use no more than a total of 1.5K bytes of
TTIE[T'IUI"}’.

Substitution parameters are indicated in the template lines with the
pereent sign {%) followed by single digit number (0 through 9). Upto

Background 19

9 parameters numbered from 1 to 9 can be used. The zeroth
parameter is a macro expansion count which is automatically kept
by the assembler. Use of this parameter can guarantee a uniyue
value for each expansion of the macro. This is useful when including
LABEL fields in the template. Example:

MACRO PASFUN

LDD STATICBASE,FCR

LEAY %1,PCR

LEAX %2,PCR

PSHS UY XD

LBSR PASFUN

LEAS 6.5

LDD S+t

BEQ FPASFUN%0

ADDD #0%3
PASFUN%0 EQU *

ENDM

The above example generates a postion-independent call sequcnee
to a Pascal function, The funcilion requires lwo parameters whose
addresses are loaded into the Y and X registers respectively. The D
register is always loaded with a given base value. The PSHS sets up
the stack with the U] register push used only to reserve space for the
value returned by the function.

On return, the macro cleans up the stack aund gels the returned
valuc in the Dregister vig a LDD rather than a PULS in order toset
the CC register. A check then follows which adds a third maero
parameter o the result if 4 nun-zero was relurned by the funetion.
Note that the third macro parameter is optional in that if il is not
present, a zero is added to the result. This macro also makes use of
the macro expansion counter to ereate an ientifer for the macro's
QW use.

KNuole that the macroe definition itself does not result in any code
generation. Neither does the assembler try (o parse the lemplate so
assembly crrors may occur when the maero is invoked.

5.3 Macro Invoecation

A macero is invoked by using ite name in the opeode ficld of a source
line that follows the definition, Up 10 9 parameters may be ineluded
in the vperand ficld scparated with commas. Not all paramelers
need he included in a given invocation. All parameters following the

20 Background

last one specified, as well as those that are explicitly not included via
placcholder commas, are assigned a null valuc.

The previous macro defintion is then included at this point in the
program. The parameters included (or not included as the case may
be)on the invacation line are substituted throughaout thesource lines
a3 defined in the templaie. These lines are then assembled and
optionally listed.

An example Invoeation of the macro defined ahove follows:
PASFUN STRING,COUNT,7

+ LDD STATICBASE,PCR
+ LEAY STRING,PCR

+ LEAX COUNT,PCR

+ PSHS U,Y.X,D

+ LBSR PASFUN

+ LEAS 6,5

+ LDD S+

+ BEQ PASFUN1

+ ADDD #07

+PASFUN1 EQU *

In the above example, the three arguments are substituted where
Lhe %1, %2 and %3 are found in the templale. The macro expansion
eount is 1 and is substituted where %0 is found in the template. The
following cxample shows a second invocation of the same macero:

PASFUN STRING1,COUNT+2

+ LbD STATICBASE,PCR
+ LEAY STRING1,PCR

+ LEAX COUNT+2,PCR

+ PSHS U,Y.X.D

+ LBSR PASFUN

+ LEAS &S

+ iLDD vt

+ BEQ PASFUN2

+ ADDD #0

+PASFUN2 EQU *

Notice that the third parameter was not included on the invoceation
line. Since the macro was constructed wilth 4 leading zero before the
%3 in the ADDD line, its presence is not required for an errvor-free
assembly, In addition, %0 was substituted with a 2 instead of a 1
providing a unigue label Tor both macre expansions. Note that in

Backpground 21

this macro a unique label is not absotutely required since the length
of the branch is always the same and could be indicated by *+5,

22 Background

6 Linkage Directives

DEFT Macro/6809 provides directives that allow the object code
produced by one assembly to be combined with thai of others. The
primary uses of this separate assembly facility are:

& A very large program can be divided into managable pieces
which are then individually coded and assembled.

e A frequently used routine or set of routines can he written and
lested onee. Any programs thatsubsequently need these routines
can merely reference them and then include them with the
DEFT Linker.

e Assembly language programs can be casily combined with
PASCAL programs,

When talking about separate assembly the term module is used to
refer to the code that is zssembled wia one exeeution of the
assernbler. Linking these modules together is accomplished by
declaring 4 given identifier as public in the module in which it is
defincd. Other modules which wish to use the routine or data area
defined with this identifier declare it as external. DEFT Linker
then inserts the correct absolute address or of fset into the code when
{he final hinary imagoe is created.

6.1 PUBLIC

The public directive is used to declare an identifier us public. The
identifier must be defined elsewhere in the same module. The
pperand field contains the identifier that iz to be declared public.
Example:

PUBLIC MYSUER

MYSUBR PSHS Y, X,D Save Registers

As with any vther reference to an identifer, a public direclive can
come either before or after the identifier is defined. Note that an
identifier which is defined as ext or exta cannul be given the publie
attribute.

Hackground 23

6.2 EXT and EXTA

The exf and exin directives are used to deline an identifier and to
declare it as exfernal to this module. Ext defincs a relative
identifier. Exte defines an absolute identifier. The distinetion does
not affect the code thal is generated by the assembler, but it does
allow the assembler to correctly flag PIC and non-PIC code. The
identifier 1o be defined is in the label field. Example:

YOURSUBR EXT
YOQURCONST EXTA

LDD #YOURCONST
LBSR YOURSUBR

6.3 STACK

This directive allows you to specify how much stack space this
module will require at execution time. This is eonvenient when
linking assembly language with DEFT Pascal so that a total stack
requirement can be determined bv DEFT Linker. 11 this directive
is not present, the assembler agsumes a zery stack requirement. The
absolute expression in the operand field is the amount. Example:

STACK 320

24 Background

7 Listing Control Directives

This section describes the assermnbler directives available to control
the source listing produced by the assembler. Although these
directives control the sourece listing, they are not included in the
listing themselves,

7.1 EJECT

The assembler normally prints 55 source lines on a page before
starting a new page. This directive specifies thal the next source
line should begin at the top of a page. There is no operand field.
Example:

EJECT

7.2 LIST

This eauses the assembler {3s? level Lo be incremented hy one. The
list fevel is avaluethat starts at zero and determines whether source
lines should be included in the list file. When this value is greater
than or equal to zero, lines are included. When it iz negative, source
lines are not incladed. If a previous NOLIST (see below) made the
list level go negative, then this directive will cause the listing to be
turned back on. If the 1ist level is already zeru, this LIST will cancel
the next following NOLIST. Thisdirective has no operand. Example:

LIST
7.3 NOLIST

This causes the assembler lisf level to be decremented by one. See
LIST for a description of the list level. Its general purpose is W
prevent source lines from being listed. This directive has no
operand. Kxample:

NOLIST
7.4 MLST

This directive causes macra expansions to be listed. Unlike the

on or off. This directive has no operand. Example:
MLST

Background 25

.
¥’
=
s
=
;.
>
=

7

7.5 NOMLST

This directive suppresses macro expansions from beinglisted. This
directive has no operand. Example:

NOMLST
7.6 SKIP

This directive causzes 1 or more hlank lines to he included in the
source listing. The number of blank lines ineluded is the absolute
expression in the eperard field. If the operand ficld is net presentor
lhe expression is less than 1, then a value of 1 is used. Example:

SKIP 2
SKIP

7.7 STITLE

This directive specifies the string that is to be the subtitle string
printed at the top of the listing starting with the next page. The
string found in the operand field is used. This directive does an
implicit ESJECT. Example:

STITLE /Important Subroutine Name/

7.8 TITLE

This directive specifies the string thatis to be the title string printed
atthe top of thelisting starting with the next page. The string found
in the operand field is used. This directive does an implicit FJECT.
Fxample:

TITLE /Important Program Name/

26 Background

8 Error Messages

The DEFT Macro/6809 Assembler generales error messages in
the source listing at those points where it detects either syntax
errors or encounters [0 errors while processing asource file, Error
messages are distinguished by the *** EEROR - al the beginning of
the line and follow the line thal they are refercneing. Following are
the error messages and a short explanation of each.

ADDR MODE

An invalid addressing mode was used.

BAD OPCODE

An unknown opcode or macro was used,

BAD RMB

An RMT instruction must have a positive ahsolute expression foran
operand.

COPY NEST

A copied file may not have a COPY instruction in it.

DUPL MACRO

There is already a macro defined with this name.

DUPL SYMBL
There is already a symbal defined with this name.

PUBLC->EXT
An external symbol is being declarced as public. This is illegal.

EXPRESSION

An illegal expression has heen detected.

LABEL RQ'D)

This npeode requires a symbol in the label field and there is none.

Background 27

MAC SPACE

This macroe definition exhausts all the available macro space and sa
is rejected.

MACRO NEST @

You cannot invoke a macro from within a macro.

OPRND RQ'D

This opeode reguires an operand and there is none.

OPRND SIZE

This opcode requires an 8 bit eperand and the one that is present
requires 16 bits.

PHASE

This label is being assigned a different value on the assernbler’s
second pass than it recieved on the first pass. This is usually due to
using a symbol in an RMB statement before the symbol is defined.

REGISTER o

An unknown or illegal register has been specified.

UNDEF SYM

An unknown or illegal symbol has been nused.

i
x
-
-
-
L)
:
e
E
=

=

28 Rackground

