DEFT Debugger

1Introduction i i i 1
2General Operation i 2
2.1 Linking in DEFT Debuggerot 2
R T 3 o W 2
. 2.8 Betting Breakpoints oo 3
24 Executing Your Program ... i iiaananns 3
2.5 [nterrupting Program Execution 3
2.6 Displaying/Modifying Memory and Registers 4
2.7 Checking Program State o i il 4
BCommandsooviii i e e b
3.1 Display Register (DR} ... oo o
32Display Word (DW) .o i e 5
B3R Msplay Byte (DB) ... i e i 6
3.4 Display Floating Point (DF)Y o e H
3.5 Display String (DS} ..o e 6
3.6 Display Variable (DV) i ... B
AT Display Hex (DH) ..o i i T
3.8 Display Next (DN ... i 7
3.9 Modify Register (MR)o e e 7
310 Modify Woerd (MW .o e e et 8
. 311 Modify Byte tMB) ..o et]
3.12 Modify Floating Pomt (MF)Y .o, ... oo o 23
3.3 Modify String (MS) ... 4
3.14 Modify Variable (MV) ... g
3.15 Clear Breakpoints (CB)Y ..o i iie et 9
316 User Screen (LIS) . oo e e Yy
1T Evaluate (EV) o e e i et g
BB Trace (TR . ovr et et ren e naivamees 10
Q10 Ge(GOY ... e 1)

B 20 8tep (BT . e 11
0 5 A {1 11 T 11
FEXpressions e 12
4.1 Constantso e e 12

F A e 117 o) o 12
4.3 8ymbols e 1+
4.4 Terms and Indirectioncciiiiiiiien o, 15

. 001 1 74) - N 15

Debhug

1 Introduction

The DEFT Debugger is a software module which can be linked

into any program produced by DEF T software products. [t becomes

the main module in the resulting program and allows the

programmoer 1o control its resulting execution. DEFT Debugger
. includes the following featuares:

¢ Likeother debuggers, this one provides for memary and register
display and modification as well as instruction hreakpoints.
Memary display and modification can occur in hex, decimal,
floating poinl, ASCII and string formats.

s Single Pascal statement execution is available when the DEBUG
option is specilied al compile time.

® Normal program operation can be interrupted and the Debugger
activated when the BRKAK key is depressed.

e Symbolic access Lo memory areas is automatically provided by a
special interface to the DEFT Pascal Campiler. This symbolic
access ineludes automatie as well as static variables,

o A general expression capability allows the Debugger Lo perform
all arithmetic and type and hase conversions for vou.

. & Atracefacility provides you with a procedure call history so Lthat
you can see how you got to a specific point in a Pascal program.

e Automatic sercen preservation restores the screen area and
attributes anyvtime program execution is resumed. Thissimplifies
debugping of graphic programs.

How To 1

2 (zeneral Operation

Although there are a1 number of features built into the DEFT
Debugger specifically o debug Pascal programs, any program
produced with DEPT software products ean be debugped with it.

2.1 Linking in DEFT Debugger

Inorder to use DEFT Debugerer vou answer the DEFT Linker's
DEEBT/G?(Y) guestion with anything other than N or » when you
link the program. DEFT Debugger is automatically included in
the resulting binary and gets initial control of the 6809 micro-
pracessor when your program is executed. DEFT Linker provides
DEFT Debugger with a table of all the module names and offsets
in the resulting program along with the address where your
program would normally begin execution. DEFT Debugger is
loaded, as a part of your program, when you lead your program with
the LOADM “myprogm' . EXEC commanid.

2.2 Debug Screen

After linking your program you are ready to execute it. When you
begin execution DEFT Debugger will gain controt and present
you with its sereen. This initial sereen looks like this:

SYMBOLIC ONLINE DEBUGGER V3.x
(C) 1983 DEFT SYSTEMS, INC.
COMMAND:

PS 02 B0 0000

vD 00 B1 0000

vC 0 B2 0000

B3 000D

CC B4 0000

A xx B5 0000

B xx B6 0000

DP xx B7 0000

X xxxx
Y oaoxxx
U xxxx
PC xxxx
S xxxx

DEFT Debugger is now waiting for a ecommand to execute and has
displayved the camplete sel of regislers it maintains for the program
heing debugged. You will normally enter atwo echaracter command.
DEFT Debugger then prompts yon for any additional

2 How To

parameters required by the particular command,

The ehapter on Cominands deseribes all the commands and their
required parameters. The chapter on Expressions deseribes the
rules for forming expressions which are used in most parameters.
Whal you see un the sereen when the Debugger is fivst activated or
anytime you hit a breakpoint ig the automatic cxecution of the DR
command. Following is a short deseription of the types of operations
for which you might use DEFT 1)ehugger.

2.3 Setting Breakpoints

One of the first things that you will want to do with the Debugger
will be tosct a breakpoint. A breakpoint is a place in your program
where you want your program’s execution to be suspended and
DEFT Debugger activated. This allows you to examine variables
or in the casc of assembler language, registers. You can then see if
the pragram has produced the proper intermediale resulls.

You set a breakpoint by using the Debugger’'s modify register
command to set the value of one of the eight Breakpoint registerstn
the address of the place in your program where you want the
breakpoint to cecur. You have 8 breakpoint registers which allows
you to specify up to 8 different places 1n your program uat one lime.
This 1s especially convenient when you are notsure which place your
program will go to first. The section on Symbols under Kepressions
deseribes how 1o specily a symbolic address.

2.4 Executing Your Program

After having set some {possibly no) breakpeints, you may then use
DEFT Debuggers 0 command to begin (or eontinue) your
program’s execution. Another possible command i DHEFET
Debugger’s ST (Single Step) command which will allow vou to
specify the number of 'ageal statements that you want to execute,
Note that this option is only available when vou have previeusly
enabled the debug? option when the Pasecal program was compiled.

2.5 Interrupting Program Execution

[¥ you used the (GO command o start execulion, it will stop
executing when one of the breakpoints that you specified is
encountered. If you used the 87 command, then execution will stop
when the specilied number of Pascal stutements have been executed.

How Tho 3

=
]
o2
~
o)

In cither ease you may stop the program’s execution by depressing
the BREAK key. [f the program was compiled with the DEBRTU(
option enabled then execution will stop on the next Pascal statement
that is execnted. Depressing the BREA K key while the program is
prompting [or keyboard input will cause it Lo slop even if the Debuy
option was not enabled at compile time.

2.6 Displaying/Moedifying Memory and Registers

After your program stops, the Debugger is re-activated and you can
use the display eommands to determine what your program has
done so {ar. Youran change any variable or regisler thal you wish
before resuming exceution again in order to change the way that
your program iz executing. Nate that if your program stopped
because itencountered a breakpointthat you specified via one of the
breakpoint registers, then you will have to clear that breakpoeint
hefore resuming vour program. Otherwise, the program will
immedialely breakpoint again.

2.7 Checking Program State

In addition tovariables (memory)and registers, you ean also use the
/8 {(User Screen) command 1o see what the sereen is supposed to
look like when DEFT Debugger is not using it. In addition, the TR
{'I'Race) command will follow the chain of pointers that Pascal
builds on the stack. This trace of all the current activation hlocks
will tell vou what Pascal procedures are currently active and where
they were ealled from.,

4 How To

3 Commands

This section describes all the eommands available on DEFT
Debugger, The title of each subsection names the corresponding
eommand and contains the two character command representation
in parentheses,

3.1 Display Register (DR)

Thiz command causes all the DEFT Dehugger registers to be
displayed. All registers are displayed in hexadecirmal, Those which
are 18 bit registers are also displayed as module offsets with the
module name and hex offsel displaved following the absolute hex
value.

The registers BOthrough B7 are the breakpoint registers whichcan
he set to addresses in your program at which you want execution to
stop. The registers CC, A, B, DP, X, Y, 1], PC and S are the 6809
machine registers, The remaining three registers relale to the
graphic capabilitics of the TRS-80 Color Computer and are as
fellows:

® PS s the Page Select register, The {ower 7 bits of this register
specify the upper 7 bits of the memory address at which the
sereen page beging. This value is initially 2 indicating that the
screen page beging at address $400 or 1024.

& 171} is the Video Display Generator register. The lower 3 bitz of
this register speeify the graphies mode that is to be used.

& (] is Lhe Video Contral register. The wpper 6 bits of this register
specify the color set and qualily the graphics mode selected by
the VDR.

Unlike the 6809 registers, the graphics registers cannot be read and
saved by DEFT Debugger. Therefore anytime your program
modifies these values at a pointat which you are breakpointing, you
will have to tell the Debugger whal these values should be. This is
donc via the Modify Register (ME) command.

3.2 Display Word (DW)

This command allows you to display 1 or more 16 bit words in
memory in both decimal and ASCIT formats. There are two
parameters:

* ADDRASS: - This parameter requires an cxpression which
gpecifies the address of the firsl 16 bit word to display.

How To 5

=
byl
—
-
=
i

& (COUNT:-This parameter requires an expression which specifies
the number of 16 bit words to display. 1f you enter nothing then
the count defaults tn 1.

3.3 Display Byte (DB)

Thigcommand allows you to display 1 or more 8 bithytes in memory
in both decimal and ASCII formats. There are two parameters:

® ADDRESS: - This parameter requires an expression which
specifies the address of the first 8 bit byte to display.

¢ COUNT:-Thisparameler requiresan expression which specifies
the number of 8 bit bytes to display. If vou enter nothing then the
count defaultsto 1.

3.4 Display Floating Peint (DF)

This command allows you to dizplay s Pascal floatling point (real
type) number variable. There is one parameter:

® ADDRESS: - Thig parameter requires an expression which
specifies the address of the floating point variable.

The floating point variahie is displayed in decimal format.

3.5 Display String (DS)

This command aliows you Lo display a Pascal string variable. There
is one parameler:

¢ ADDRESS: - This parameter requires an expression which
specifies the address of the string variable.

The string variable is displayed in ASCII format. In addition, the
decimal length nf the string is displayed.

3.6 Display Variable(DV)

This command allows vou 1o display 4 variable as cither a word,
bytle, floating point or string. You must use a symbol as pari of the
ADDRESS parameter. DEFT Debugger uses the type of the
symbol used to delermine which type of display to perform. There
dre two parameters;

6 How To

o ADDRESS: - This parameter requires an expression which
specifies the address of the variable.

o COUNT: - This parameter is prompted for only when the symbol
type isan ARRAY. [t requires an expression which specifies the
number of 8 hit bytes or 18 bil words lo display. If you enter
nothing then the count defaults to 1.

3.7 Display Hex (DH)

This command allows you to display 80 bytes of memeory in both hex
and ASCII representation. There iz one parameter:

o ADDRESS: - This parameter requires an expression which
specifies the address of memory Lo begin the display.

This command displays the memaory as 10 lines of & bytes each. The
lagt 3 hex digits of the mermory address is displayed at the beginning
of each lne [ollowed by the hex representation of the 8 memory
hytes at that location. Finally, the ASCII representation of those
same bytes ig displayed at the end of the line.

3.8 Display Next (DN)

This command is almost exactly the same as Displuy Hex {DH)
exceptthat youare not prompted for an address, The display beging
atthe point wherethe last Display Hex or Display Next left off. This
command provides a convenient means to page through memary.

3.9 Modify Register (MR)

This command allows you W modily any of DEFT Debugger’s
registers. All registers digsplayed on the Display Register sereen ¢an
be maodified. This cammand has two parameters:

e REGISTER: - This parameter reguires the 1 or 2 character
name of the register that i3 to be modified,

¢ VALUN: - This parameter requires an expression which is the
value that the register is to bu set to.

3.10 Modify Word (MW)

This command allows you to modify a 16 bit word in memory. It
requires two parameters:

e ADDRESS: - This parumeter requires an expression which
speeifics the address of the 16 bit word to modify.

o WORD wrox VALUK: - This prompt shows the hexadecimal
address thal will be modified (the “xxxx"). It requires an
cxpression which specifies the value that the word at that
location i to be set to. If nothing is entered, the command is
terminated and the word 1s not modified. If 1 value is entered,
then the word is modified and DEFT Debugger continues to
prampl for subseguent words until nothing is entered,

3.11 Modify Byte (MB)

This command allows you to modify an 8 bil byle in memory. It
requires twa paramcters;

o ADDRESS: - This parameler requires an expression which
specifies the address of the 8 bit byte to modify.

o BYTE xrxxxe VALUE: - This prompt shows the hexadecimal .
address that will be medified (the “xxxx™). It requires an
expression whichapecifies the value that the byte atthat location
is to be sel Lo, If nething is enlered, the command is terminated
and the byte is not modified. If u value is entered, then the byte is
madified and DEFT Debugger continues to promnpt for
subsequent byles until nathing is entered.

-
1:.
-
—
=4
I

3.12 Modify Floating Point (MF)

Thiz command allows you to modify a Pascal floating point (real
type) number variable in memeory. It requires two parameters:

® ADDRESS: - This parameter requires an expression which
specifies the address of the flvatling point number to modify.

& VA LIR: - This parameter requires the decimal representation
of the fluating point value that is to be inserted. .

8 How To

3.13 Modify String (MS)

This command allows you to modify a Pascal string in memury. IL
requires two paramelers:

® APDDRESS: - This parameter requires an expression which
specifies the address of the string to modify.

o yuoxie STRING: - This parameter requires a number of ASCII
characters to be entered. These are stored directly in the string
with the numhber of characters enlered becoming the string's
length. If nothing is entered, the command is terminated and the
string is not modified.

3.14 Modify Variable (MV)

This command allows you tomadify a Pascal variable by identifying
it symbolically. Thiz command allows DEFT Debugger to
determine whether to execute a Modify Word, Modify Byte, Modafy
Floating or Mudify String command depending on the type of the
variable named in the A DBRESSS: parameter.

3.15 Clear Breakpoints (CB)

This command is used o clear all the breakpoint registers to zero.
You can set a breakpoint by using the Modify Register (MR)
command to set one or more of these repistars to a non-zero value.
You can also elear an individual breakpoint by using the same
command 10 set a breakpoint register to zero,

3.16 User Screen (US)

Thiz command allows vou 1o view the sereen currently being
displayed by the program under tesl. The values of the P8, VD and
V(registers are used to determine what the display is to look like.
The display persists until you type any character.

3.17 Evaluate (EVY)

This command allows you to evaluate an expression and display its
results in decimal, hexadecimul and ABCII It requires one
parameter:

o VALUE: - This parameier requires an expression whieh 1s to be
evalnated.

- 3.18 Trace (TR)

This command allows you to see all the procedures which arc
currently active. The absolute address and module offset of the
current program counler (PC)and each return address on the stack
(beginning with the most recent)is displayed on each line. For thosc
modules which also have symbols, the name of the procedure or
funetion to which the return address points is also displayed, This
then provides you with a list ol each active Procedure/Function and
the point in the calling Procedure/TMunction from which they were
called.

Since this command relies on the standard Paseal frame structure,
there are some limitations on its use:

e Only those I'rocedure/Function activations that have been
eompleted will be displayed. If you set a hreakpoint at the
address of a Procedure or Funetion and then doa TR, you will not
see that Procedure or Function in the list. You must set the

breakpoint at (or Single Step to) the first statement in the.

Procedure or Function. Nele thai the Single Step (ST} command
will not breakpoint in the middle of a Procedure/Funetion
activation {unless you have zet an explicit. breakpoinl).

® The command is not meaningful until after the complete
activation of the main Paseal program. Thiz is done thesameas
Pracedure or Funclion desceribed ahove,

s Only the most recent 12 (or fewer) activations arc listed.

Calls to Assembly language routines will be listed only il they
construel @ Paseal frame structure on the stack.

3.19 Go (GO)

This eommand allows von to execute your program. If any of the
breakpoint registers ure non-zero then hreakpoints are set at those
points befare program execulion begins. DEFT Debugger will not
regain control until one of the specifiad breakpoints is encountered.
If one of the breakpoints s the same as the PO register then control
will return immediately o the Debugyer. This command has no
parameters,

Once a breakpoint is encountered, the DR command is
aulomatically executed and wou are prompted for another

10 How To

command.

3.20 Step (ST)

This command is similar tothe GO command except that it uses the
hreakpoints inserted into the program by Puseal when you specified
debug at compile time. Not only does the DEFT Pascal compiler
include symholtables, but it also gencrates a breakpoint instruetion
at the beginning of every Pascal statement when you specify the
debug option. The Step command then lets you slep through the
Puseal statements by counting the corresponding breakpoints inthe
rosulting code.

Note thal this command will operate the same as the GO command
if there are no Pascal modules with the debug oplion enabled. This
command has 1 parameter:

® COUNT: - This parameter requires an expression which is the
number of Pascal statements twexecule before returning control
to DEFT Debugger. If ne cxpression is entered, a value of 1 i3
assumed.

3.21 Quit (QU)

This cowrnmand allows you to terminate your program and return
control to BASIC,

4 Expressions

Moast DEFT Debugger commands will prompt you for some
additional information such as an address of a field or a value which
15 to be used by the command. Most of these additional prompts
require a general expression Lo be enlered. This expression can be
as simple as a single digit or as complex as several numbers in
various bases with symbols combined with different operators. This
seclion deseribes the rules for forming these expressions,

The DEFT Debugger deals entirely in 16 bit unitz. All components
of an expression have 16 bit values and any resulting expression also
has a full 16 bil value.

4.1 Constants

A constant used by itself s a legal expression. The DEFT Debugger
supports 4 types of constants,

1. A decimal constant is a set of numbers in the range of -32768 (o
32767,

2. A hexadecimal constant is a4 dollar sign (§) followed by up to 4
hexadecimal digits (0.9, A, If the constantis less than 4 digits
long, leading zeroes are assumed.

3. An ASCI} constant is a single quote*) followed by asingle ASCII
character. The value of this constant is the binary value of the
ASBCII eharacter asthe low 3 bits with the high 8 hits being zero.

4. A double ASCI constant is a double quete (%) followed hy two
ARCII characters. The value of the constant is the binary value of
the first ASCII character asthe high 8 bits and the second as the
low ¥ bits.

4.2 Registers

The currenl conlents of any of the registers can he referenced by
entering a percent sign (%) followed by a one or two character
register name. The available registers are those displayed via the
Mizplay Register {DDR) command. They are as follows:

12 How To

Mnemaonic Bit Size Descriplion
PS 8 Page Seleci

vD 8 Video Display Generator
. vC 8 Video Contral

CC 8 6809 Condition Code

A 8 6809 Accumulator A

B a 6809 Accumulator B

DP a 6809 Direct Page

X 16 6809 Index X

Y 16 6809 Index Y

u 16 6809 User Slack

PC 16 6809 Program Counter

S 16 5809 System Stack

BO 16 Breakpoini 0

B7 16 Breakpoint 7

. 4.3 Symbols

Symbols are the names or identifiers that you used in your source
code program to reference variables, procedures and functions. If
the program that you are debugging has some Pascal modulesin it
¥ou can have the compiler include the symbols found in these
modules by answering its DERL/G? prampt with anything other
than N or ». This will cause the compiler to include the names of all
the variables, procedures and funetions in specially formatted
tables. These tables are imbedded in the resulting object module
cade.

Object modules ereated with ihis option will be larger duc lo the
presence of the symbols which will be part of the final load module
hinary code. When you have several Pascal modules in 4 single
program, you can redice the symbol table memory requirements by
specifying debug symbols in only the modules that you wish to
debug. The debugger knows which modules have symbols and
. which ones don't so that you only get the symbols that you need.

There are threc types of symbols which are referenced in Lthree
different. ways:

-
—
-
-
=

h)

1.

14

A Madule symbol s the filename(not including the exiension) of
an object file or library section which was linked with the
debugger. Youindicate amaodulesymbol with a leading lessthan
sign {<0) followed by the symbol ilself. The names of ali the object
modules thatare linked together are known to DEFT Debugger
regardless of whether symbols internal to the corresponding
module are presentl. This means thal you can use module symbols
even with assembly language mordules. The value of a module
symbol is the absolute memory address of the first instruction at
the beginning of the module.

One of the most commaon uses of 2 module symbeol is to specify an

address within a module. This is usually done as follows:
<MYMODULE+$1A3

This form can be used to set breakpoints in either Pascai or

assembly language modules. In thiscase 01 A3 is the offset within

the module where the Pascal statement starts on which you want
Lo breakpoinl.

. A module symbol can he further qualified with 4 static symbol,

This is done by immediately foliowing the module symbol with 3
greater than sign (2») followed by the static symhol. This static
symbol can represent anyv Pascal procedure, function or statically
allocated varighle. The value of a static symbol is the heginning
memory address of the program clement represented by the
symbal.

A static symbol can be further qualified to any level required by
centering additional greater than signs (O2) followed by the
qualifier. For example:

<MYMODULE>UTILPROC-LCLFUNC>X

This eniry specifies the stalic symbol X, which is Tocal Lo the
function LCLFUNC which is vontained within the procedure
UTILPROC. This procedure in turn is in the module
MYMODULE.

After amodulehas been referenced (either by itself ar as partofa
static symhol reference) the next static symbol ean he specified
without specifying that same module name. DEFT Debugger
will use the last module referenced, as a basis for its scarch,
anytime a static svmbal is specified without a leading maodule
name.

How To

3. An automatic symbol is indicated when a leading alphabetic
character is detected. In this case DEFT Debugger will
automatically scope the symbol by [vllowing the static provedure
eall links in the stack. This type of symbol specification will find
the symbol which is known at the eurrent point in the program.
You can use this tvpe of specification for procedure. function and
static variable symbols as well as automatic variable symbols,

4.4 Terms and Indirection

The elements or arguments of an expression, consfants, regrsters
and symbals, are genericully known as ferms. You can add a level of
ndirection toa term by prefixing it with an at sign (@), This means
that Lhe vuiue of the term is used identify the location of. or to
adidress, a 18 bit word in memory. The contenis of that memory
word are then used as the value of the term. This is known as an
Fadhreet Term.

4.5 Operators

Terms and Indirect Terms c¢an be combined with the use of
aperators. The operators whichare available are the four arithmetic
" operators: addition (+), subtraction (), multiplication (*), and
division (/). There is no precedence between operators and all
expressions are evaluated from left to right.

