DEFT Linker

LIntrodactionciiri i i nns 1
2O0peration e 2
2L ORIGIN L. e e, 2
b I 1 L 1 Y O 3
@ caBRINARYFILE: ... 3
2 A PASCALI (Y e e 3
25 DEBUGGER? (Y) ot 3
28 ORI NAMES FILK: . 4
2T OBRJECT FILE: e, 4
GLinker Map o i e e 5
A Error Messamesovt e e 8
41 BINARYFILEL/OERRORo e 8
42 DUPLICATE - . IN o o e 8
43 DUPLICATE MAINIGNORED ... iiiiaat, o
44 HEXWORDPARMMISSINGINORBJECTRECORD ... 8
ASINVALIDDEBUGMODULEcovv. 8
46 INVALIDMARKER et g
4.7 INVALID OBJECT RKCORD ..., 9
A4BMODULETOO BIG . ot e it 9
49 K0 MAIN ENRY e e e e 9
. 410 0BJECTFILELOERROR Yy
411 PHASE ERROR ..ttt Y
412 SYMBOL MISSING IK ORJECT RRCORD b
113 8YMBOL TABRLE FULL- .. INo itiannnn, 9
414 UNDEFINED - . IN .. e 9

Blamitations 10

1 Introduction

DEFT Linker is a program which reads the object files produced
by the DEFT Macro/6809 Assernbler or DEFT Pascal Compiler
and produees an executable binary image suitable for loading with
Disk Extended Bosie’s LOADM eommand. DEFT Linker features
the following facilities:

® Object code reloeation
¢ Automatic Paseal runlime modules inclusion
e Builtin DEFT Debugger interface

¢ Support for objecl module libraries. Object module libraries
constructed hy DEFT LIB, consisting of many object module
files can be specified as input to DEFT Linker. Only those
library sections referenced by your program will be included in
the resulting binary.

e Multipleohject file input, cither explicitor via a separate ASCII
file.

o [iisk Ertended Basic ecompatihle hinary outpus file.

2 Operation

Once you have ereated the necessary object files with the compiler
and assembler, you are ready to link them together into your final
binary imagc. The ecommand LOADM “LINKER"EXEC will load
DEFT Linker from disk drive 0 and begin execution.

DEFT Linker operates in three phases. During the first phase it
displays the DEFT Linker screen and prompts vou for the
information required in subsequent phases.

The second phase starts after all the prompling is completed.
During this phase it reads the object files, builds its symbel tahle of
publiwe symbols (relocating those symbols that need it), prints the
module by module portion of its list file and reports any errors found
in the object [iles.

The third phase involves DEFT Linker once again reading all the
object files. On this last phase it performs all necessary relocation,
fixups and eclernal reference resolution while creating the final
binary image. At the end of this phase DEFT Linker prints the
symbol table.

The following provides an explanation of each prompt made by
DEFT Linker,

2.1 ORIGIN

This 1% the decimal memory address where the resulling binary
image is to be loaded by the LA M commaund. For non-position
independent files, this is the position from which the binary must
execnte. I the resulting image 13 position independent then a
parameter can he added to the LOADM command to load the
resulting file at a higher memory address.

If nooriginis specified, then it defaults to 5000 {decimal), When vou
PCLEAR 1, FILES 6,00 and CLEAR 16,5999, the 4999 of the last
command tells BASIC thal 4994 (decimal) iz the highest memary
location that BASIC is allowed touse. Therefore the lowest remory
tocation available for your use starts at 5000 (decimal). From this
memory location on up is now availuble for your specific use. This
then, 5000 (decimal), becomes the lowest memory address which is
pratected from BASIC.

If you wish 1o write programs that are called from BASIC
programs, then you will have to determine how much memory
BASIC will need and enter an ORIGIN which is high cnough to

2 How Tao

provide that much memory,

2.2 LIST FILE:

This is the standard file name (with a default suffix of L.8T)of u file
to be ereated hy DEFT Linker which reports the results of the link,
DEFT Linker will not produee any file if no file name is entered for
thiz prompt.

2.3 BINARY FILE:

This is the standard file name (with a defaullsuffix of BIN}of a disk
file Lo be ereated by the DEFT Linker. This file name must be
given and it must be a disk [ile.

2.4 PASCAL? (Y)

This prompt requires a ¥ or N response. Actually, any response
other than N or n (including noresponse) is interpreted as ves. When
this question is answered yes, the Pascal hoot module
(PASBOOT/0OBJ) and runtime library (RUNTIME/f.{53) are
included. Only those segmentsof the runtime library referenced by
your program will be included in the resulting hinary load module.
This means that the resulting program will be no larger than it has
to be. Unused Paseal runtime features will not be included.

RUNTIME/LIB and PASBOOT/OBJ must both be presenton disk
drive 0.

2.5 DEBUGGER? (Y)

Likethe PASCAL? guestion, the assumed answer isyes unless an N
or # is entered. When this is answered affirmatively, the module
DEBUGGER/LIB:0 is included in the binary. In addition, any
PPascal modules which were compiled with the debug option turned
on will have breakpnints generated and a module table will be
included for use by the debugger.

If this question is answered negatively, then DEFT Debugger is
not included, Pascal modules with the detg option turned on will
have NOD's generated in place of breakpoinls and no module table
will be produced.

NOTE: if you have the DEFT Pastvul Workbench and answer the
PASCAL? question NO and the DEBUGIER? question YES, then

How Tu 3

Mur

vou will have lo enter EUNTIME/LIB as one of the object files in
either vour OBJ NAMES FILE or tw ¢nc of the OBIECT FILE
prompts, This ig because DEFT Debugger uses some of the
facilities in the Pascal runtime library. If you have only DEFT
Bench, then you do nat have to do this since everything iz included
inthe DEBUGGHER/LIB library,

2.6 OBJ NAMES FILE:

When a large program has been divided into a number of modules,
it iz sometimes convenient to create a text file with the editor that
lists the names of the ahject files to be ineluded so that. you don’L have
1o individually type them in each time you link the program. This
prompt allows vou to specify the name of such a file.

This file musl have 1 standard [ile name per line. The defaultsuffix
for the file names included in the file iz OBJ. The default suffix for
the OBJ NAMES FILE itself is LNK, When vou enter a file name
for this prompt, DEFT Linker does not prompl you for individual
object file names,

2.7 OBJECT FILE:

This promptis made if you did not provide an OBJ NAMES FILE.
You provide avéngle object file nume, DEFT Linker will verify that
it ¢an open the file and then prompt you for another file name. If
more than one objeet file is to be included, enter the additional
objeet file names one at each prompt. Onee you have entered all the
names, jusl hit the ENTER key on the last prompt and DEFT
Linker will begin its second phase.

4 How To

3 Linker Map

The following is a brief description of the Linker Map listing
produced by DEFT Linker during linking operations.

1.

[

Header - This is the first line of every page of the linker listing.
The Header includes the page number.

. Module Nawme - Every object [le or module linked in a linker

operation is identificd by object file name. Proceding each
module name, the following is printed:

» Ohjert Generator-This [irst line fol lowing the object file name
identifies the compiler or assembiler that produced the object
file.

& Titlefs) - Al titles produced withina program source file, with
the title diractives for bath the compiler and assembler, are
printed following the object generator identification. If a
program contains no ticle(s) then none are printed.

o MODULE ORIZN - The four digit number following Lhis
title is the hexadecimal representation of the address in
memory where that module will begin within the program.

o MODULE SIZE - The four digil number following this title iz
the hexadecimal represeniation of the the number of bytes in
mcmory that this module requires.

Syrnhel Table - Atthe end of every linker operation a sy mbol table
ig produced. Prinied under this heading are the names of the
symbhols referenced by thal program. Fach element of this table
15 as [ollows:

o Symbol Value - This is a four digit number which precedes
every symbol lable entry. This four digit number iz a
hexadecimal representation of the value or program address
which the symbol is used 1o reference.

® Symbol Type - This is the one or Lwo character field which
immediately follows the symbol value. This field identifies
whether 4 symbol represents an absolute value{A), a program
relative value (R), or a duplicate reference (17).

o Symbol Name- thig Iield immediaccly follows the symbol ty pe.
The symbol name is the string of characters uzed to reference
a program value.

How To 5

=3

10.

11,

. Pagition Independence - This 1s the seventh from the lasl line

printed on the linker map listing. The characler exprossion
found on this line indicates whether the linked program is
position idependent or non-position independent. PIC indicates
that the resulting machine program contained in the program’s
load module file is Position Independent Code.

ORIGIN - The four digit number fallowing this title is the
hexadeeimal representation of the address in memory where this
program begins.

LAST ADDR - The four digit number following this title is the

hexadecimal representation of thelast address in memory where
this program resides.

MAIN ENTRY - The four digit number following this title is the
hexadecimal representation of the first address in memory
where this program begins its execution.

. VOTAL SIZE - The four digit number following this title is the

hexadecimal representation of the total number of bytes of
memory required to hold the program’s cxecutable instructions.

. STACK REQUIRED - The four digit number fullowing thistitle

iz the hexadecimal representation of the worst eaze number of
bytes of stack memory required to execute the resulting muchine
program. It is the sum of the stack requirements of each
individual module.

TOTAL MEMGRY - thigis thenext tothe lastline printed on the
linker map listing. The four digit number following this title is
the hexadecimal representation of the total number of hytes of
memory required to cxecute the resulting machine program.

TOTAL ERROKS - This is the last line printed on the linker map
listing and is the number of errors cncountered by DEFT
Linker during its execution.

How To

L@ DEFT LINKER VERSION 3.1 (C) 1984 DEFT SYSTEMS, INC. PAGE 1

@ PASBCOT

DEFT MACRO/(B09 ASSEMBLER, V3.0

PASBOCT V3.0

MODULE ORIGIN 1388

MODULE ‘STZE 00EL

FORMAT: 1
9 T—@ " DEFT RASCAL V3.3
MOLULE ORIGIN 1445
MCDULE SIZE oc1c
FORMATSP: 1
DEFT MACRO/6809 ASSEMBLER, V3.0
MCDULE ORIGIN 2061
MODULE SIZE oo1c
RUNTINE/LIE
® LIBRARY ¢
*EASDISK
DEFT MACKG/6809 ASSEMBLER, V3.0
PASDISK 5/18/B4 V3.2
MODULE ORIGIM 207D
MODULE SIZE o405
*PASIC
DEFT MACRO/680§ ASSEMBLER, V3.0
PASIO ¥3.1
MCDULE ORIGIN 248z
WCDULE SIZE ousE
#PASKEYRD
DEFT MACRC/EB0G ASSEMBLER, V3.C
PASKEYBD V3.0
HDEULE ORIGIN 2BEC

e & 6 e e 9 o

SYHB OL TAELE

25CC R CLOSE 2061 R COMMANDNAMES 2AFG b CURSOR
2F95 R DECODE 2076 R DPTCHRSIRAPF 2075 R DFTCKRETRCPY

2016 R DFTHFITEDSX 27C5 R R
2780 B DFTWRTCHAK 2765 R DFTWRTINT 2708 K
265E B DFTWATTYPE 2FF3 R EKCODE 258E R EOF
2545 B EOLN 2566 B FILEERROR 2BBF A FILETYPE
5F8 R GET 2FR3 B HEX 3057 B MARK

R 13

R B

R R

BFTH TELN 209C DFTWRITETAPE
DFTWRTSTRG

3066 R MEMAVAIL 28AF PAGE 2884
305F R RELEASE 2807 SETFILETYPE 2DAD
2DCF B STRINGDELETE 2E02 STRINGINSERT ~ 2E3F

STRINGCCFY
STRIKGFCS

PIC

GRIGIN 1388
LAST ADDR 3o7C
MAIM ENTRY 1388

R

11, TOTAL MEMORY 3516

2 2 € o e o & s e & & &6 2 & 6 & 2 2 e @

9.
_Q\ TCTAL SIZE 1CFS
10. STACK RECUIREL 089A

TOTAL ERRCRS 0

4 Error Messages

The DEFT Linker generates error megsages during its second
phase. These messapes usually involve duplicate or missing public
variable definitions. The error messages sturt with*“**¥ and are ag
follows:

4.1 BINARY FILE I/O ERROR

An I/0 error was detected while attempting to write to the binary
output file, This could be ecansed by a full disk or the write protect
being left on the diskette.

4.2 DUPLICATE - ... IN ...

The specified publie symhbol being defined in the speeified objecet file
has already been defined.

4.3 DUPLICATE MAIN IGNORED

More than une main object module hag been found, any main
modules found after the first one will be assumed to be a non-main
module. There can be only one place in the program wherc
exceution 18 v start, that is in the main module.

4.4 HEX WORD PARM MISSING IN OBJECT
RECORD

An invalid furmal object record has been detected. This may be due
to the wrong type of file heing input (o the Linker.

4.5 INVALID DEBUG MODULE

The necessary public symbols have not been defined when the
DEBUCGGRKR? question has heen answered with yes. This is
probably due to not having the lile DEBUGGREE/LIR present on
drive 00 while linking.

4.6 INVALID MARKER

An invalid format language marker record hus been found in the
object file. This may he due to the wrong type of file being input to
the Linker.

8 How To

4.7 INVALID OBJECT RECORD

Aninvalid formatobject file record has been found. This may be due
10 Lhe wrong type of file being input to the Linker.

4.8 MODULE TOO BlG

The module being processed is too big to be processed by the Linker.

4.9 NO MAIN ENTRY

No main medulehas been included, The entry point iz assumed to be
the beginning of the binary image.

4.10 OBJECT FILE 1/O ERROR

An [/} error was detected while attempting to read an object file,
This error also oecurs if vou don’t have RUNTIME/IIE or
PASROOT/GBJT un drive 0 when linking a Pascal program.

4.11 PHASE ERROR

The value of a symbol is different in the Linker’s second and third
phases. This error should not oceur and indicates some fundamental
problem with either the Linker or the object Iiles.

4.12 SYMBOL MISSING IN OBJECT RECORD

An invalid formatohject record haus been detected. This may be duc
to the wrong type of file being input to the Linker.

4.13 SYMBOL TABLE FULIL.- ... IN ...

The specified publicsy mbal heing defined inthe specified objeet file
cannot be put in the Linker's symbul table because it is full.

4.14 UNDEFINED - . IN ..

The speeified publie symbol being referenced in the speeificd objeet
file has not been defined.

How Tuo Y

5 Limitations

In addition to the abave facilities, this version of DEFT Linker has
the following limitations:

32K Memory Operation -

When running DEFT Linker in only 32K bytes of memory the
following limitations apply:

1. A maximum of 50 chjeet files can be linked together.
2. No obhject file can be larger than 4K byles.

3. No more than a total of 400 public symbols can be defined in all
the modules to be linked. The Paseal runtime package has about
8(in this version.

64K Memory Operation -

When running DEFT Linker in 64K bytes of memory the following
limitations apply:

1. A maximum of 50 object files can be linked together.
2. No ohject file can be larger than 36K bytes.

3. No more than a total of 400 public symhaols ean be defined in all
the modules (o be linked. The Paseal runtime package has about
30 in this version.

10 How To

