DEFT Pascal Language

LIntroductiono e et aea s 1
2 The Pascal Programoiiiiiiiiiiiiinnnrnoes 2
21 Block STrueturet e 2
2 B CODE L\ttt e e e e 5
. 2.3 Declaration Statements . .. cai e b
54 Executable Statements ... oo e 6
2.5 Program Statement ... 7

2 Language Elements o oo 8
2.1 Reserved Words ..o e 8
o Identifiers ... e 9
3 abElS o et 9
G4 ConsLANLE ..t e 9
A5 Special Operators ... v v e e 11
BB COMINBNIE oottt e i et e 11
ACONST Statemendo iiiiniit o irarceaaa o, 12
L B o BRI 13
A1 TypeIdentifier ... o 13
B2 Enumerated ... e e 14
B Subrange .. i 15
. 0 BT 7 S 15
BHhArravs e e e e, 16
BB RerOrdS ... o e e e 17
BT POIMBES .ttt e e aea i 19
O30 T 13- SR N 20
BOPACKED Topeg v e et i e 21
B Variables ... e e e 22
6.1 Automatic Allocation o e e 22
6.2 VAR Declarabion i iriirre i iiannaaasn 22

7 Procedures and Functions ..., oo 23
7.1 PROCENURE Declarationvcoiiioiiii i, 23
7.9 Procedure Invocation ... et i i 24
TAFUNCTION Declarabion ... it iiiiiinin e 25
T4 Function Invocation 26
THEFORWARD References ..o ioiiieniarnr e, ¥7

8 Expressions and Assignments L. :

Bl B acOrs e e :
B.2 Arithmetic Operators i i iiaenen. 2
¥.3 Integer/Real Expressions oo o
8.4 Arithmetic Precedence
B0 Sl P USSI0TIS e re et ettt e e
3.6 Baolean Fopressions . i e
BT Assipnment Statement ...

9 Compound and Control Statements 36
971 BEOIN Statement, e 36
O 2 Stalement e e 36
93 WHILE Statement . 3T
94 REPEAT Statement 38
90 FOR Staternent ..o 38
06 CASE Stalemenl ... oo 40)
9.7 GOTO SLALEIMSAL L. e e e i rre i creeeens 41
98 EXIT Statement ..o i 41
DOWITH Stademenl ..o . 42

10 Input/QUtPUL ..o e e 4+
101 File Names ..o o e 14
10.2File Variables oo oo e
10.3 INPLT and OUTPUT File Variables
10,4 Overall Example oo i e
1000 Lazy Keyhoard Input oo oo oo o0 o
10,6 CTOSE SGalemionl oo e e e 18
107 EOF Function i et 48
IR EOLN Funetion ..o e 18
109 FILEERROR .. i 49
100 GET Statement ..o ne e v 49
L PAGE e al)
10012 PUT Statement o e e innaans ol
10.14 RESET and REWRITE Statements al)
10,14 READ Statement. ... al
10,16 READLN Statement ...,, 52
10,16 WRITE Statement ... i e Y

10,07 WRITELN Statement i al

11 Builtin Procedures and Functions 55

T ABS it 55
112 ARCTAN e e e e 55
L3 CIIR .o e 55
. 114 08 e 55
1L CUREOR e 56
1GEXP .o e U 56
107 LN e 56
TLEMARK oot A6
TLOMEMAVAIL .. 56
TN EW Lot e A7
LLILODD . e e 57
1112 ORD oottt e 57
LIS PRED oo e e e e e e 58
ILI4 BELEASE oot e i 58
LI BOURD ottt 58
L1018 SN e e e 5%
LT SIZEOF e 1
L1 I8 SR ot e 59
119 SR T ot e [Y
1120 SUCT oot e, 59
. 1121 TRUNCG e e 59
12 DEFT vs. Standard Paseal o i, 60

123 Error Messsameso ittt iainiiinannees 652

Paseal

1 Introduction

The DEFT Pascal Compiler is a program which reads lines of
gource code produced with DEFT Edil (or any ASCII compalible
editor) and produces a listing file and an object file. The ohject file
produced containg actual machine codes which can he dirvectly
executed by the G209 CPU in Lhe CoCo after being linked by the
DEFT Linker. This differs from a compiler which produces
prendo-code in the following respects:

1. The resulting program does nol reguire an interpreter to
execute. It is a self-sufficient program thatl requires only the
Colar Computer hardware.

2

. The runtime exeeution environment is closer o assembler than
BASIC. However, the DEF'I' Debugger provides some very
powerful features which can make debugging the resulting
machine language program almost as easy as dcbugging a
BASIC program using the inlerpreter,

3. The performance of your program will be vastly better since
each line of Paseal will result in only a few machine language
instructions being executed. Withan interpreter, several machine
language subroutines within the interpreter will gonerally he
executed per line ol zource code.

4. 'Fhe program can he easily linked with DEFT Macro/68049
assembly language modules and other DEFT high level lanpoape
modules.

A Color Computer with 32K or 64K of EAM memoryand 1or 2disk
drives is a fairly powerful computer capable al maost tasks being
done on large micros and minicomputers. Using DETFT IPascal
allows you to exploit that power to its fullest.

This section of the User’s Guide describes those portions of DEFT
Pascal which are [S0Q Standard. The following section, Advanced
Pusgral, deseribes the language extensions and assemblerinterface.

Background 1

2 The Pascal Program

When programming in BASIC, there is almost no restriction on
what order any of the statements must be placed. This is because
almast all BASIC statements are ececutable statements. The only
exception is the DIM statement, which is a declaration staterment
that defines arrays before thev are used. DATA staternents are
neither executuble nor declaration statements butthey do represent
a poriion of the programs data. One of the primary aspects of the
Pascal language is the presence of a very powerfl deelaration
syntax, which requires that all Pascal programs be written in a
specifie formart.

2.1 Block Structure

In Paseal, a program’s structure is defined via a number of different
v pes of decloration statements. These declaration statements allow
a programmer to create an environment, or program structure, in
which to get his job done with any number of the different types of
execulable statements. This provides the programmer with the
ability to create a customized program structurethatean mateh the
problem structure of each program that he writes.

Pascal programs require the following elements in this order:
PROGRAM <program heading™>;
<_declaration statements>-
BEGIN
<_executable statements’>
END.

Throughout this manual, words or phrases enclosed in <> are
nun-lerminetors, That is, they refer to a class of objects any one or
more of which may be substituted al the place where the non-
terminator iz found. Tn the example above, PROCRAM is a
terminatur which represents exactly itsclf, whereas <‘program
heading>> 1s a non-terminator and represents someoverall program
informatien which will vary from program to program.

The important items in the structure are the <declaration
statements> which define elements of your program and the
<lexeculable slatements> which actually perform work on the
defined elements.

Another way of describing the structure of a I'ascal program is as
follows:

2 Background

PROGRAM < pragram heading> ; <block>-.
Where <block> iz equivalent to:

< declaration statements>-

BEGIN

<executable statements>-

END

This concept of block is central to the overall philosophy of Pascal.
With this structure, <declaration statements>> can define sub-
blocks which in turn can themselves contain <declaration
statements> which can [urther define sub-sub-blocks, and so forth
and soon. Itis with this hicrarchy of blocks that the averall program
i¢ broken down into manageshle pieces and implemented.

Block execution is initiated when that Hock is invoked or activated.
Execution within a block starts with the first statement following
the begin and proceeds sequentially with each of the following
statements, (NOTE: in the section on Compound and Control
Statemenis you will see how the order of execution can be altered).
When the end stalement is executed, the block is deactivated and
control returns to the point at which the hlock was invoked.

Program execulion staris al the last begin statement defined in the
program. The program’s execution will terminate at the last end
statement defined in the program. Another way of pulting it s that
the last section of executable slatemenis defined within a program
i# the first section to be executed. The sub-hlocks, sub-sub-blocks,
ete., which arethe defined procedures and functionsof the program,
are activated by being invoked, or called, during the execution of the
program or one of the previously execcuting procedures or functions.

2.2 Seape

The <Zdeclaration’> statements within a dlock define <Zidentifiers™,
or data names, which are used by the <executable stalemenlss>
within that Alock. When the dfoek 1s activated, these <lidentifiers>
are activated and become Anown. When the bloel is deactivated, the
<identificrs>> are deaetinated and become vwnkown.

Identifiers used by <exeeutable statemoents’> may be either those
defined by <Idceelaration statements>within thesame<block > or those
defined inan enclosing<<block>>. All<idenlifiers>> defined within all other

Background 3

blocks of the program become unrknown.

Note also, that the same identifier may be redefined in different
levals of blocks. At any point in the program the innermost
definition known at that point will be used. The following is an

example. .

PROGRAM Example;
VAR I,J : Integer;

PROCEDURE Praci;
VAR | : Integer;

PROCEDURE Proc2; -

VAR J : Integer;

BEGIN {* Proc2 BEGIN *)
1:=d

END;

BEGIN (* Prac1 BEGIN *)
Proc2;
1:=J

END;

BEGIN (* PROGRAM Example BEGIN *) .
Proct;
1:=4J

END.

The above stalements are discussed in detail later in the manual,
but for purposes of this example, shert definitions are provided
here. The var statements declare integer variables named Fand/or
J. The I:=J meansihal thevaluein fisassigned to £, The nel;and
Proc2; statements invoke the corresponding procedures.

When the program first beging excention (Just after the last beyin)

onlvy the I and J and the procedurs Mroc! deelared within the
program Example are known, When Procl is invoked and begins
executing, Proc? becomes known, the [declured within Proe?
becomes known, the § within the program Kxmmple becomes
unknown (because of the temporary redefinition of /) and the ./
defined in the program Ezample remains known. When Proc? is
invoked and beginsexeculing, the./ definition in Prov2 temporarily .
replaces the J defined within program Erasple.

4 Background

When Froc2 returns and is deactivated, the previous . definition is
restored. When Proc! is deaclivated the previous I definition is
restored and Proc? becomes unknown, Nole that the above
definitions and redefinitions apply to any type of <declaration
statement> described below.

[n Advanced Paseal vou will find extensions to thizs fundamental
structure.
2.3 Declaration Statements

Asshown above, declaration stalemenis come hefore the executable
statements and arc separated from them with the begin reserved
word, The following are the <declaration statements>:

LABEL <identifier>, ... ,<identlfier>;
CONST <identifier>> = <constant>;
TYPE Zidentifier>- — -Ztype delinilion>;

VAR <Zidenlifier>> : <“type definition>;

PROCEDURE <identilier </parameter definition>> ;
<hlock > ;

FUNCTION <identiler> < parameter definition>>- :
<type definition>>; <block™> ;

As in most Paseals, the above declaralions may oceur in any vrder;
although according to standard I"ascal, the above order must be
followed with the exception of the PROCKEDITER and FIINCTION
declarations, which can be mixzed with each other. Note that the
above definition is reeursive in that <declaration statements> are
parlof both pracedures and funelions, both of which are themzelves
tvpes of <deeclaration statements™,

Background b

More detailed information about each of the ahove deelaration
statements can be found in the chapter on cach statement.

2.4 Executable Statementis

Executable statements are placed after the begin. The first statement
following the begin is the [irst slalement actually executed by the
resulting program. Followingisa list of the executable statements:

<Idenlifier> ;= <expression:-
BEGIN ~Zexecutable statements> END
CASE <‘expression>> OF
<Zconstant list>> : <‘executable statement>;

<Z¢onsgtant list™> ; <“executable statement>-
ELSE <executable statement-
END

FOR </identifier> := <Zexpression™> TO <expression> DD
<execulable statement-

FOR <identifier>> := < expression>> DOWNTO <expression> DO
< executable statament=- .

GQOTO <Jabel>

IF < boolean expression>> THEN < executable statement>>
ELSE < executable statement>

READ (<file specifler: <linpul list:>)

READLN (<lile specifier>- <Zinput list>)

REPEAT < execulable statements™ UNTIL <hoolean expression:>
WHILE < boalaan expression>> DO < executable statement ™
WITH <record varlable>> DQ <executable statement>>

WRITE (<file specifier:> <<output list>>)

WRITELN (<file specHler > output list>>)

<_pracedure identifier>> < parameter specification>

G Background

Anywhere that ¥ou see <executable statements> (plural) you can
usze the following:

< executable statement’>;

<“executable statement™-

Note that the semicolon (;) is used to separale rather than terminale
individual statements. Multiple statements separated by semicolons
are allowed in hoth begin and repent slatements. The else clauses in
hath the +f and cose statements are optional and may be omitted,

Complete datails on each of the above statements can be foeund in
Expressioms and Asstgnments, Control, Procedures and Funclivis,
and Fuput/ Ouipud.

2.5 Program Statement

Az shown above, the program statement is the firsl statement of
vour Paseal program. It has the following format:

PROGRAM <identifier>- | (<identifier>, ..., <identifier>)] ;

The first <identifier>> is the program neme and serves no other
purpose withinthe program. Following this isan optional parameter
list enclosed in parentheses. In standard Paseal, this Tist identifies
thage lile variables deelared within the program which represent
external files. The pre-defined file variables input and output must
be present in this list il used (explicitly or implicitly) within the
program.

In DEFT Pascal, the uptional parameter list is allowed hut
ignored. This is because all files within a DEF'I' Pascal program
are assumed to be external.

=1

Background

3 Language Elements

Before deseribing a Paseal program, it is necessary to deseribe the
fundamental elements which make up one. Like BASIC, the Pascal
language is construeted from the ASCII character zet used on the
Color Computer. These are as follows:

ABCDEFGHIJKLMNOQPQRSTUVWXYZ <upper case characters>-

abcdetghijklmnopgrstuvwiyz <lower case characters>
0123456789 <_numbers_>
14800 + BH{()*+ - f =2 < special characters>-

All the following definitions will be in terms of these charucters,
Note that exeept in character and string conslants (delined below),
there is no distinetion between upper and lower casc characiers for
those language elements using letters.

3.1 Reserved Words

Reserved words arc groups of upper or lower case characters whose
meaning has heen predefined in the language. The followingris a list
of all the reserved words used in DEFT Pascal:

ABS AND ARRAY
BEGIN BYTE* CALL*
CASE CHAR CHR .
CONST D DO
DOWNTO ELSE END

EXIT* EXTERNAL* FILE

FOR FORWARD FUNCTION
GOTO IF IN
INTERFACE* LABEL LSL*
LSR* MOD MODULE*
NEW NOT ooD

OF OR ORD
PACKED PRED PROCEDURE
PROGRAM PUBLIC* READ
READLN RECORD REPEAT
RESET REWRITE SET
SIZEOF* STATIC* sSucc
THEN TO TYPE
UNTIL VAR WHILE
WITH WORD* WRITE
WRITELN XOR*

& Backpround

Those reserved words which are suffixed with an asterisk arc part
of the language extensions of DEFT Pascal.

3.2 Identifiers

ldentifiers are groups of letters and numbers which begin with a
letter {eilher upper or lower case) and contain up to 12 upper or
lower case letters and numbers which are nol the same as any of the
above listed reserved words, Asin BASIC, theseidentifiers are used
w resresent variables. However, in Pascal they can also be used to
represent constants, types, procedures and functions as well.

3.3 Labels

I.abels are used to uniquely identify cxecutable statements so that
an executable statement may he referenced with the GOTO
statement. A Pascal label funetions much in Lhe same way as line
numbers do in BASIC. A label is a number which can be up to four
digits long, which prefixes an executahle statement with a colon {:)
in between. The following is an example:

100: 1:=J

All labels within a bloek of exccutable staterments must be declured
with the LABEL declaralion staterment prier to the bloek of
executable statements. The following is an example:

LABEL 100;

3.4 Constants

There are five types of constants supported by the DEFT Pascal
Compiler. They are individually deseribed below:

Decimal Integer Constant - A decimal integer constant is a group
of numbers which may be oplivnally preceded with either a+or -,
The allowable range for decimal integer constants is -32763 (v
32767. The following are some examples:

.45
a5
+10234
+32768 (illegal, too large)

Hexadecimal Inieger Constant - A hexadecimal integer constant
isagroupofupto 4 hexadecimal digits thalis preceded witha §. A

Rackground Y

hexadecimal digit may be any of the following: 0, 1,2,3,4,5,6,7, &,
9, A B, C D E, F. Note that only upper case characters can he nsed.
The range of hexadecimal integer constants is $0000t0 SFFFF. The
following are some examples:

$ABC
$12A5
35

Ilexadecimal integer constants are not part of standard Pascal but
a form of it can be found in many Paseal implementations.

Character Constani - A character constant is a single ASCII
characler (uther than carriage return) eontained between single
quotes (). Following are some examples:

!A,

laS

!&!
The last example is a character constant that represents a single
ouote. ''he single quote is doubled,

String Constant A string constant is similar to a character
constant excepl that more than one character is contained helween
the quoltes. The following are some examples:

'PAGE HEADING TITLE
'Sam and Joe™'s Sub Shop’

Note that in the last examuple, the twosingle quotes in Joc”s actual lv
18 interpreted as one single yuote in the string. In addilion, a
character constant can be used anywhere a siring constant is
required hut the reverse is not true.

Real Constani - A real constant is a signed, deeimal, fractional
number, optionally raised to a sighed decimal power. The general
form of & real constant is:

<Zsign>< number - number>E<slgn><numher>:
g

The allowable range of real constants is 1E-4 to 9563 both positive
and negative. Following are some examples:

10 Barkground

1.
-6.74
56.3E6
1.2E-3

. The only required elements in a real constant are the first <numhber>
and the deeimal point {). NOTE: Standard Pasecal requires at least
one decimal digil aller the decimal poind.

Constant Identifiers - Through the use of the CONST statement
deseribed later, identifiers can be defined as constants of some fype.
Three constant identifiers are predefined: true, folse and »il. Later
sections on Censtants, Types and Frpressions and Assignments
provide more informalion on these constants.

3.5 Special Operators

As in BASIC the characters +, -, * and / are used as operators.
However, Pascal also has several iwo character operators, These
are as [oliows:

<> notequal

= greatar or aqual
. <~ less or equal

. range

= assignment

3.6 Commenis

Comments may be interspersed between (but not in the middle of)
any of the above language clements. A comment starts with the
characters (* and ends with the characters *). Unlike BASIC,
Puscal comments ean extend through more Lhun one line. All the
characters following the (* are considered comments until the *} s
found later on the eurrent or subsequent line.

Background 11

4 CONST Statement

Constants as language elemenis arc a part of practically every
programming language. BASIC contains both real number and
string constants. As described in the section on Language Blements
Pascal containsg deeimal integer, hexadecimal integer, character,
string and real constants ag well as constant Idenlifiers.

There are two ways to create constanf identifiers. One way is
through the definition of enwmerated types deseribed in the section
on Types. The other is through the use of the const statement. The
general form of the const stalement is as follows:

COMNST <Jidentilier> = <constant™>;

Following are some cxamples:

CONST MinSize = -3;
MaxSize = 3451;
CharLit ='G";
StringLit = ‘This is a STRING constant’;
ExtraSize = MaxSize;
Yes = True;

The purpose of the CONST stalement is toallow the programmer Lo
symbulically define a particular constant value for use later in the
program. Note that any type of constant including a previously
defined constant identifier may be used on the right hand sideof a
conslant statement.

12 Background

5 Types

The eoncept of dype is nol entirely unigque to Pasceal, However, the
existence of a TYPE statement is a new concept for those
programmers used to BASIC. When uging BASIC, you have [our
kinds (types) of data: numbers, sirings, number arrays and string
arrays. You have different operations that can be performed with
each and their internal representations are different.

A lype refers to a data strueture rather than any particular
allocation of thatstructure. It has both a size and a sct of aperations
that can be used on it. See the seetion on Variables [or the actual
allocation of memory for a given lype.

In DEFT Pascal, real numbers and strings are hoth availablealong
with a number of other lypes, including some types that you can
define yourself. There are three classes of types: simple, structured
and pornder. Those types which refer to indivisihle entities are
referred toas simpie. An example is Lhe set of whole numbers. Those
which are made up of groups of simple types arc referred to as
structurcd. An array iz an example of a structured iype. A pointer
type refers to thuse entities (such as memory addresses) which
identify an occurrance of a type.

Asshown in the chapter on Program Siructure the general form of
the TYPE statement is as follows:

TYPE <lidentifier>> = <iype definition>;

This statement causes the <identifier: to be associated with the
<iype definilion>. Following are descriptions of all the possible
type definitions.

3.1 Type Identifier

A previvusly defined type identifier cun be used as a #ype definition.
These identifiers include all those defined in previous TYPE
statements as well as a number of pre-defined fypes thal are
available. These predelined fypes are as follows:

® [nteger - 'Thiziga 16 bit (2 bytes) Ordinal type which can ranpe in
value from -32768 w 327487.

® Real - This isa 6 byte floating point number. The high-order bit
of the first byte is the sign of thenumber. The low-order 7 bitsof the

Background 14

first byte is the signed exponent. The lagt 5 bytes contain the
mantissa in the form of 10, BCD digils. The range of the exponent
iz 63 1o -64 and reflects powers of 110,

e Char - This is an 8 bit (1 byte) ordinal type which can range in
value from NUL to DEL. These are the ASCII characters with
binary values from 0 to 127, In addition, the characters that
correspond to the hinary values from 128 to 255 arealso included.

® Ronleas - This is an SIbit (1 hyte) Ordinal type whieh can have
only two possible values: 0 (false) or 1 (true).

® String - This iz an 81 hyte structured #yoe which can contain a
variable number of Chor iypes. A minimum of 0 and a maximum
of 80 Chars can be contained in a String type. See Advanced
Pnseal for more information on strings.

o Text - This is a structured type which defines a FILE OF Char.
This type occupies 286 bytes, See the section on Input/Output for
more information.

One additional term is that of erdinal type. All simple types excent
real are also ordnal lypes. Ordinaliypes are simpletypes thal have
explicit, discrete values.

Bee the seclion on Expressions nnd Assignments for 2 diseussion of
the kinds of operations that can be performed on these varivus types.
Anexample of a TYPE stalement using a type identificer:

TYPE Number - Integer;
Number is a new fype that 1s fully compatible in expressions wilh
Integer.
5.2 Enumerated

One way you can deline vour own bype is by listing aset of values that
areto be associated with afype. Thisdefines anewordinal type. The
general form of an enumerated type definition ig as follows:

{<idenlifier>s, ... , <identifier>>)

An example of a TYPE statement using an enumerated {ype
definition is the following:

TYPRE Color = {Red, Green, Yellow, Blue, Orange, Brawn};

14 Background

Color becomes a new independent fype and any variablesof this fype
will be protected from variables of other types in an expression. All
enumerated types are 8 bit values where the identifiers eontained in
the list are implicilly delined as eonsfants of that type. The order of
the identifiers in the list is important. The internal representation
of the first value is always 0, the second is 1 and so forth. See the
section un Eopressions wad Assignments Tor a deseription of the
operations that can be performed on an Enumerated type.

5.3 Subrange

A Subrange iz a subset of values of an Ordinul type. The general
form of a Subrange definition is as follows:

<constant>..<constant>

Where the firsi <constant> must be less than or equal tothe second
<constani’>. Some examples of subrange TY K statements are az
follows:

TYPE SmallCaolor = Green..Blue;
Smallint = -128..127;

Note that in the case of & subrange ol Integers, a subrange of
-128..127 or less will result in an 8 bit#ype which is fully compatible
with the full 16 bil integer fypes.

2.4 Sets

A set is a collection of specific oecurrances of objects of the same
typc. The general form of a zet definition iz as follows:

SET OF <(type identifier:>

Where the <itypeidentifier:» specifies the types of objects eomprising
the set. The following is an example of use:

TYPE SmaliColor = {Green,Yellow,Red,Blue);
SomeColaors = SET OF SmahlColar

SmollColor 15 an enumerslion, and SoweColors s a set Lype.
Variables of the type SomeColors arc sets with ¢ to 4 members
which were listed in the declaration for the type Smallolor.

All Sets are 32 byte structured 2y pes. Each bit position within those
32 bytes represents cach member of the set. Where bit 0 of byte 0
represents member (). Bit 1 of hyte O reprezents member 1, and seon

Backgrounid 15

up to 250, All Sets may have up to 256 members. Sets ure given
values by specifyving 4 set constant as a list of constants enclosed by
[1s. If aset has no values assigned, itis ealled an cmpty set, whichis
denated by two empty brackets [].

BriteColaors :=[Yellow, Red];
DarkColars = [Green, Blue];
NoCalors :=[];

5.5 Arrays

Anarray is a familiar concept tomost programmers. In Pascal, itis
a list of types (which themselves can be arrays). The general form of
an Array definition is as follows:

ARRAY[-Cordinal type definition>>] OF <type definition>;

where the <ordingl type definition> defines not only the guantity of
<type definitions>> in the ARRAY but also how each element is
wdentified by type. I'be following examples should make (his clear.

TYPE Coloriist — ARRAY[1..6] OF Color;
Numbers = ARRAY|Green..Orange| OF Integer;
Flags = ARRAY][Caolor] OF Boolean;
ColorPlane = ARRAY[0..200] OF ColorList;

In the first example, alist of volors is being defined. Elements of the
list arc identified by the integers 1 through 6 for a total of 6
elementz. Note thal one of the mosl Trequent uses of subrange Ly pes
are in nrray definitions.

The second example shows one of theunique properties of I'aseal . 1n
this case we aredelining a4 element listof numbers where elements
of the list are identified, in order, by the colors Green through -
Orangc. The third example is similar where the number of Boolean
elements is equal Lo the tolal number of eolors und each element of
the list is identified by a different color,

The final example shows adelinition of 4 two-dimensiona) amay, In
this example there are 201 lists defined. Variables of this type
would have memaory organized as follows:

16 Backperound

